References
<A NAME="RT79311SS-1A">1a</A>
Arduengo AJ.
Harlow RL.
Kline M.
J.
Am. Chem. Soc.
1991,
113:
361
<A NAME="RT79311SS-1B">1b</A>
Arduengo AJ.
Krafczyk R.
Chem.
Unserer Zeit
1998,
32:
6
For recent reviews, see:
<A NAME="RT79311SS-2A">2a</A>
Bourissou D.
Guerret O.
Gabbaï FP.
Bertrand G.
Chem. Rev.
2000,
100:
39
<A NAME="RT79311SS-2B">2b</A>
Hermann WA.
Angew. Chem. Int. Ed.
2002,
41:
1290 ; Angew. Chem. 2002, 114, 1342
<A NAME="RT79311SS-2C">2c</A>
Enders D.
Balensiefer T.
Acc. Chem. Res.
2004,
37:
534
<A NAME="RT79311SS-2D">2d</A>
N-Heterocyclic Carbenes
in Synthesis
Nolan SP.
Wiley-VCH;
Weinheim:
2006.
<A NAME="RT79311SS-2E">2e</A>
N-Heterocyclic
Carbenes in Transition Metal Catalysis
Glorius F.
Springer;
Berlin:
2007.
<A NAME="RT79311SS-2F">2f</A>
Marion N.
Díez-González S.
Nolan SP.
Angew. Chem. Int. Ed.
2007,
46:
2988 ; Angew. Chem. 2007, 119, 3046
<A NAME="RT79311SS-2G">2g</A>
Enders D.
Niemeier O.
Henseler A.
Chem.
Rev.
2007,
107:
5606
<A NAME="RT79311SS-2H">2h</A>
Nair V.
Vellalath S.
Babu BP.
Chem.
Soc. Rev.
2008,
37:
2691
<A NAME="RT79311SS-2I">2i</A>
Nair V.
Menon RS.
Biju AT.
Sinu CR.
Paul RR.
Jose A.
Sreekumar V.
Chem.
Soc. Rev.
2011,
40: DOI: 10.1039/c1cs15139h
<A NAME="RT79311SS-2J">2j</A>
Chiang P.-C.
Bode JW. In N-Heterocyclic
Carbenes: From Laboratory Curiosities to Efficient Synthetic Tools, RSC
Catalysis Series No. 6
Díez-González S.
Royal Society of Chemistry;
Cambridge:
2010.
p.399-435
<A NAME="RT79311SS-2K">2k</A>
Biju A. T., Kuhl N.,
Glorius F.; Acc. Chem. Res.; DOI: 10.1021/ar2000716.
<A NAME="RT79311SS-2L">2l</A>
Hirano K.
Piel I.
Glorius F.
Chem.
Lett.
2011,
40:
786
<A NAME="RT79311SS-2M">2m</A>
Hahn FE.
Jahnke MC.
Angew.
Chem. Int. Ed.
2008,
47:
3122 ; Angew. Chem. 2008, 120, 3166
<A NAME="RT79311SS-2N">2n</A>
Díez-González S.
Marion N.
Nolan SP.
Chem. Rev.
2009,
109:
3612
<A NAME="RT79311SS-2O">2o</A>
Moore JL.
Rovis T.
Top. Curr. Chem.
2010,
291:
77
<A NAME="RT79311SS-3A">3a</A>
Gusev DG.
Organometallics
2009,
28:
6458
<A NAME="RT79311SS-3B">3b</A>
Dröge T.
Glorius F.
Angew. Chem.
Int. Ed.
2010,
49:
6940 ; Angew. Chem. 2010, 122, 7094
Analogy to phosphines:
<A NAME="RT79311SS-3C">3c</A>
Kühl O.
Coord.
Chem. Rev.
2005,
249:
693
<A NAME="RT79311SS-3D">3d</A>
Tolman CA.
Chem. Rev.
1977,
77:
373
<A NAME="RT79311SS-4A">4a</A>
Magill AM.
Cavell KJ.
Yates BF.
J.
Am. Chem. Soc.
2004,
126:
8717
<A NAME="RT79311SS-4B">4b</A>
Chu Y.
Deng H.
Cheng J.-P.
J.
Org. Chem.
2007,
72:
7790
<A NAME="RT79311SS-4C">4c</A>
Amyes TL.
Diver
ST.
Richard JP.
Rivas FM.
Toth K.
J. Am. Chem.
Soc.
2004,
126:
4366
<A NAME="RT79311SS-4D">4d</A>
Alder RW.
Allen PR.
Williams SJ.
J. Chem. Soc., Chem. Commun.
1995,
1267
<A NAME="RT79311SS-4E">4e</A>
Kim
Y.-J.
Streitwieser A.
J. Am. Chem. Soc.
2002,
124:
5757
<A NAME="RT79311SS-4F">4f</A>
Higgins EM.
Sherwood JA.
Lindsay AG.
Armstrong J.
Massey RS.
Alder RW.
O’Donoghue AC.
Chem.
Commun.
2011,
47:
1559
<A NAME="RT79311SS-5">5</A> The studied triazolin-5-ylidene showed
a similar nucleophilicity as DMAP and DBU, whereas the imidazolin-2-ylidene
and imidazolidin-2-ylidene were 1000 times more nucleophilic:
Maji B.
Breugst M.
Mayr H.
Angew.
Chem. Int. Ed.
2011,
50:
6915 ; Angew. Chem. 2011, 123, 7074
<A NAME="RT79311SS-6A">6a</A>
Knappke CEI.
Neudörfl JM.
Jacobi von Wangelin A.
Org. Biomol. Chem.
2010,
8:
1695
<A NAME="RT79311SS-6B">6b</A>
Knappke CEI.
Untersuchungen
zur Umpolung von Alkylhalogeniden durch N-heterocyclische Carbene. Dissertation, University of Cologne,
Germany
Verlag Dr. Hut;
München:
2011.
<A NAME="RT79311SS-6C">6c</A>
Knappke, C. E. I.; Jacobi
von Wangelin, A. unpublished results. For precedences of deoxy-Breslow
intermediates derived from α,β-unsaturated esters
see:
<A NAME="RT79311SS-6D">6d</A>
Fischer C.
Smith SW.
Powell DA.
Fu GC.
J.
Am. Chem. Soc.
2006,
128:
1472
<A NAME="RT79311SS-6E">6e</A>
Matsuoka S.-i.
Ota Y.
Washio A.
Katada A.
Ichioka K.
Takagi K.
Suzuki M.
Org. Lett.
2011,
13:
3722
<A NAME="RT79311SS-6F">6f</A>
Biju AT.
Padmanaban M.
Wurz NE.
Glorius F.
Angew.
Chem. Int. Ed.
2011,
50:
8412 ; Angew. Chem.
2011, 123, 8562
<A NAME="RT79311SS-7A">7a</A>
Breslow R.
J. Am. Chem. Soc.
1958,
80:
3719
<A NAME="RT79311SS-7B">7b</A>
Breslow R.
Kim R.
Tetrahedron Lett.
1994,
35:
699
<A NAME="RT79311SS-7C">7c</A>
Chen Y.-T.
Barletta GL.
Haghjoo K.
Cheng JT.
Jordan F.
J.
Org. Chem.
1994,
59:
7714
<A NAME="RT79311SS-7D">7d</A>
Teles JH.
Melder J.-P.
Ebel K.
Schneider R.
Gehrer E.
Harder W.
Brode S.
Enders D.
Breuer K.
Raabe G.
Helv. Chim. Acta
1996,
79:
61
<A NAME="RT79311SS-7E">7e</A>
White MJ.
Leeper FJ.
J.
Org. Chem.
2001,
66:
5124
<A NAME="RT79311SS-7F">7f</A>
Schrader W.
Handayani PP.
Burstein C.
Glorius F.
Chem. Commun.
2007,
716
<A NAME="RT79311SS-7G">7g</A>
Berkessel A.
Elfert S.
Etzenbach-Effers K.
Teles JH.
Angew. Chem. Int. Ed.
2010,
49:
7120 ; Angew. Chem.
2010, 122, 7275
Reaction of NHCs with alkyl halides:
<A NAME="RT79311SS-8A">8a</A>
Begtrup M.
Bull. Soc.
Chim. Belg.
1988,
97:
573
<A NAME="RT79311SS-8B">8b</A>
Ref. 4d;
<A NAME="RT79311SS-8C">8c</A>
Arduengo AJ.
Davidson F.
Dias HVR.
Goerlich JR.
Khasnis D.
Marshall WJ.
Prakasha TK.
J. Am. Chem. Soc.
1997,
119:
12742
<A NAME="RT79311SS-8D">8d</A>
Arduengo AJ.
Calabrese JC.
Davidson F.
Dias HVR.
Goerlich JR.
Krafczyk R.
Marshall WJ.
Tamm M.
Schmutzler R.
Helv.
Chim. Acta
1999,
82:
2348
<A NAME="RT79311SS-8E">8e</A>
Rivas FM.
Riaz U.
Giessert A.
Smulik JA.
Diver ST.
Org. Lett.
2001,
3:
2673
<A NAME="RT79311SS-8F">8f</A>
Kuhn N.
Göhner M.
Steimann M.
Z.
Naturforsch., B: Chem. Sci.
2002,
57:
631
Ene-1,1-diamines:
<A NAME="RT79311SS-9A">9a</A>
Huang Z.-T.
Wang M.-X. In The Chemistry
of Enamines
Rappoport Z.
John
Wiley & Sons;
Chichester:
1994.
p.1303
<A NAME="RT79311SS-9B">9b</A>
Kantlehner W. In Science of Synthesis
Vol.
24:
de Meijere A.
Thieme;
Stuttgart:
2006.
p.571
<A NAME="RT79311SS-9C">9c</A>
Keller PA.
Morgan J. In Science of Synthesis
Vol.
24:
de Meijere A.
Thieme;
Stuttgart:
2006.
p.707
Ene-1,1-diamines with 2,3-dihydro-1H-imidazole
structure:
<A NAME="RT79311SS-9D">9d</A>
Gruseck U.
Heuschmann M.
Chem. Ber.
1987,
120:
2053
<A NAME="RT79311SS-9E">9e</A>
Kaufhold O.
Hahn FE.
Angew. Chem. Int. Ed.
2008,
47:
4057 ; Angew. Chem.
2008, 120, 4122
<A NAME="RT79311SS-9F">9f</A>
Kuhn N.
Bohnen H.
Henkel G.
Kreutzberg J.
Z. Naturforsch., B: Chem.
Sci.
1996,
51:
1267
<A NAME="RT79311SS-9G">9g</A>
Fürstner A.
Alcarazo M.
Goddard R.
Lehmann CW.
Angew.
Chem. Int. Ed.
2008,
47:
3210 ; Angew. Chem. 2008, 120, 3254
<A NAME="RT79311SS-9H">9h</A>
Bourson J.
Bull.
Soc. Chim. Fr.
1971,
152
<A NAME="RT79311SS-9I">9i</A>
Gruseck U.
Heuschmann M.
Tetrahedron Lett.
1987,
28:
2681
<A NAME="RT79311SS-9J">9j</A>
Gruseck U.
Heuschmann M.
Chem. Ber.
1987,
120:
2065
<A NAME="RT79311SS-9K">9k</A>
Hartmann K.-P.
Heuschmann M.
Angew. Chem. Int. Ed.
1989,
28:
1267 ; Angew. Chem.
1989, 101, 1288
<A NAME="RT79311SS-9L">9l</A>
Hartmann K.-P.
Heuschmann M.
Tetrahedron
2000,
56:
4213
<A NAME="RT79311SS-9M">9m</A>
Ernd M.
Heuschmann M.
Zipse H.
Helv. Chim.
Acta
2005,
88:
1491
<A NAME="RT79311SS-9N">9n</A>
Ponti PP.
Baldwin JC.
Kaska WC.
Inorg. Chem.
1979,
18:
873
<A NAME="RT79311SS-9O">9o</A>
Kuhn N.
Bohnen H.
Kreutzberg J.
Bläser D.
Boese R.
J.
Chem. Soc., Chem. Commun.
1993,
1136
<A NAME="RT79311SS-9P">9p</A>
Kuhn N.
Bohnen H.
Bläser D.
Boese R.
Chem. Ber.
1994,
127:
1405
<A NAME="RT79311SS-9Q">9q</A>
Schumann H.
Glanz M.
Winterfeld J.
Hemling H.
Kuhn N.
Bohnen H.
Bläser D.
Boese R.
J. Organomet. Chem.
1995,
493:
C14-C18
<A NAME="RT79311SS-9R">9r</A>
Zhu Q.
Liu M.-F.
Wang B.
Cheng Y.
Org. Biomol. Chem.
2007,
5:
1282
<A NAME="RT79311SS-9S">9s</A>
Kunz D.
Johnsen E.
Monsler B.
Rominger F.
Chem. Eur. J.
2008,
14:
10909
<A NAME="RT79311SS-10A">10a</A>
Cariati F.
Caruso U.
Centore R.
De Maria A.
Fusco M.
Panunzi B.
Roviello A.
Opt. Mater. (Amsterdam)
2004,
27:
91
<A NAME="RT79311SS-10B">10b</A>
Sollot GP.
J. Org. Chem.
1982,
47:
2471
<A NAME="RT79311SS-10C">10c</A>
Hanna SB.
Iskander Y.
Riad Y.
J. Chem. Soc.
1961,
217
<A NAME="RT79311SS-11">11</A>
See Supporting Information for further
details on the reaction of 3k with n-BuLi.
<A NAME="RT79311SS-12">12</A>
Basicity determinations of NHCs have
been performed by deprotonation of fluorene systems. See: refs.
4b,e.
<A NAME="RT79311SS-13A">13a</A>
Lin L.
Li Y.
Du W.
Deng W.-P.
Tetrahedron
Lett.
2010,
51:
3571
<A NAME="RT79311SS-13B">13b</A>
Liu Y.-K.
Li R.
Yue L.
Li B.-J.
Chen Y.-C.
Wu Y.
Ding L.-S.
Org. Lett.
2006,
8:
1521
<A NAME="RT79311SS-14">14</A>
Allen FH.
Kennard O.
Watson DG.
Brammer L.
Orpen AG.
Taylor R.
J. Chem. Soc., Perkin Trans.
2
1987,
S1-S19.
<A NAME="RT79311SS-15">15</A>
Similar, but even more pronounced
bond orders were reported for related 1,3-dimethylimidazolin-2-ylidene acetophenone.
See ref. 9g.
A classical example of charge transfer-stabilized π,π-interaction
is quinhydrone:
<A NAME="RT79311SS-16A">16a</A>
Moser RE.
Cassidy HG.
J.
Am. Chem. Soc.
1965,
87:
3463
<A NAME="RT79311SS-16B">16b</A>
Patil AO.
Penington WT.
Desiraju GR.
Curtin DY.
Paul IC.
Mol. Cryst. Liq. Cryst.
1986,
134:
279
<A NAME="RT79311SS-16C">16c</A>
González Moa MJ.
Mandado M.
Mosquera RA.
J. Phys. Chem. A
2007,
111:
1998
<A NAME="RT79311SS-17A">17a</A>
Einführung in die Photochemie
2nd
rev. ed.:
Becker HGO.
Thieme;
Stuttgart:
1983.
p.126
<A NAME="RT79311SS-17B">17b</A>
Reichardt C.
Solvents and Solvent Effects in Organic Chemistry
2nd
rev. ed.:
VCH;
Weinheim:
1988.
p.285ff
<A NAME="RT79311SS-18">18</A>
CRC
Handbook of Chemistry and Physics
Weast RC.
Astle MJ.
CRC
Press;
Boca Raton:
1981.
p.E51-55
<A NAME="RT79311SS-19">19</A>
All structures were optimized at the
B3LYP/6-31G* density functional level of theory
and the optimized structures were further characterized as energy
minimum structures without imaginary frequencies at the same level
by frequency calculations, which provide further zero-point energies
and thermal correction to enthalpy and Gibbs free energy at 298 K.
Thermal energy corrections at B3LYP/6-31G* from
the frequency calculations have been added to the final Gibbs free
energies for analyzing the substitution effects. Furthermore, we
have also tested single-point energy calculations at the B3LYP/6-311+G* level
on B3LYP/6-31G* optimized geometries. Since both
B3LYP/6-311+G* and B3LYP/6-31G* gave
approximately the same results for the exchange reactions, we used
only the B3LYP/6-31G* Gibbs free energy for discussion
and comparison. All calculations have been carried out by using
the Gaussian 03 program package: Frisch, M. J.; Trucks, G. W.; Schlegel,
H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery,
J. A. Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.;
Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.;
Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima,
T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.
E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo,
J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi,
R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth,
G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich,
S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck,
A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul,
A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko,
A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith,
T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe,
M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez,
C.; Pople, J. A. Gaussian 03, Rev. C.02,
Gaussian, Inc., Wallingford CT, 2004.
<A NAME="RT79311SS-20A">20a</A>
Arduengo AJ.
Krafczyk R.
Schmutzler R.
Craig HA.
Goerlich JR.
Marshall WJ.
Unverzagt M.
Tetrahedron
1999,
55:
14523
<A NAME="RT79311SS-20B">20b</A>
Arduengo AJ.
Goerlich JR.
Krafczyk R.
Marshall WJ.
Angew.
Chem. Int. Ed.
1998,
37:
1963 ; Angew. Chem.
1998, 110, 2062
<A NAME="RT79311SS-21">21</A> For pulse sequences, see:
Bigler P.
Kümmerle R.
Bermel W.
Magn. Reson. Chem.
2007,
45:
469
<A NAME="RT79311SS-22">22</A>
Sheldrick GM.
Acta
Crystallogr., Sect. A
2008,
64:
112
Synthesis of this carbene and its
precursor (imidazolium salt):
<A NAME="RT79311SS-23A">23a</A>
Ref. 20a.
<A NAME="RT79311SS-23B">23b</A>
Jafarpour L.
Stevens ED.
Nolan SP.
J. Organomet. Chem.
2000,
606:
49
<A NAME="RT79311SS-23C">23c</A>
Hintermann L.
Beilstein
J. Org. Chem.
2007,
3:
22
<A NAME="RT79311SS-24">24</A>
Crystal structure data of compounds 4c and 6 are available under
CCDC 837921 and 837922 from The Cambridge Crystallographic Data
Centre via www.ccdc.cam.ac.uk/conts/retrieving.html.
<A NAME="RT79311SS-25A">25a</A>
Van Ausdall BR.
Glass JL.
Wiggins KM.
Aarif AM.
Louie J.
J.
Org. Chem.
2009,
74:
7935
Based on:
<A NAME="RT79311SS-25B">25b</A>
Fürstner A.
Alcarazo M.
César V.
Lehmann CW.
Chem.
Commun.
2006,
2176
<A NAME="RT79311SS-26">26</A> Synthesized according to:
Flahaut A.
Roland S.
Mangeney P.
J. Organomet. Chem.
2007,
692:
5754
<A NAME="RT79311SS-27">27</A>
Arduengo AJ.
Bock H.
Chen H.
Denk M.
Dixon DA.
Green JC.
Herrmann WA.
Jones NL.
Wagner M.
West R.
J. Am. Chem.
Soc.
1994,
116:
6641