RSS-Feed abonnieren
DOI: 10.1055/s-0031-1289725
Entropy-Controlled and Enantiodivergent Lewis Acid Catalysis in Water
Publikationsverlauf
Publikationsdatum:
24. Februar 2012 (online)
Abstract
Developing new and useful methods in asymmetric catalysis is of continuous importance. A current challenge is to address the imperatives of green chemistry, such that processes maximize resource-efficiency and minimize the generation of waste. To this end, this article discloses the potential of α-amino acids in the development of entropy-controlled and enantiodivergent Lewis acid catalysis. In an ytterbium-catalyzed aqueous Michael addition reaction, natural α-amino acids induced not only a large rate acceleration, but also an unusual and remarkable reversed temperature effect on enantioselectivity. As demonstrated with 17 α-amino acids, the enantioselectivity of the reaction can be significantly altered, and even reversed, simply by modifying the reaction temperature. After determining differential thermodynamic activation parameters, it was revealed that an unusually large entropy contribution was responsible for the observed effects. By further correlation to the influence of the aqueous medium, we put forward the concept of stereospecific aqueous solvation (SAS), which describes the bearing of aqueous solvation on the equilibrium of diastereomeric transition states, and thus on the R/S ratio of the product.
Key words
catalysis - enantioselective - Lewis acid - Michael reaction - water
- Supporting Information for this article is available online:
- Supporting Information
- 1
Catalytic
Asymmetric Synthesis
2nd ed:
Ojima I. Wiley-VCH; New York: 2000. - 2
Comprehensive
Asymmetric Catalysis
Jacobsen EN.Pflatz A.Yamamoto H. Springer; Berlin: 1999. - 3 Special issue on asymmetric catalysis: Proc.
Natl. Acad. Sci. U.S.A.
2002,
101:
5347
- 4
Knowles WS. Angew. Chem. Int. Ed. 2002, 41: 1998 - 5
Noyori R. Angew. Chem. Int. Ed. 2002, 41: 2008 - 6
Sharpless KB. Angew. Chem. Int. Ed. 2002, 41: 2024 - 7
Sheldon RA.Arends I.Hanefeld U. Green Chemistry and Catalysis Wiley-VCH; Weinheim: 2007. - 8
Sheldon RA. Green Chem. 2005, 7: 267 - 9
Organic
Reactions in Water
Lindström UM. Blackwell Publishing; Oxford: 2007. - 10
Hailes HC. Org. Process Res. Dev. 2007, 11: 114 - 11
Rayner C. Org. Process Res. Dev. 2007, 11: 121 - 12
Knox DE. Pure Appl. Chem. 2005, 77: 513 - 13
Ionic
Liquids in Organic Synthesis
Malhotra SV. Oxford University Press; New York: 2007. - 14
Welton T. Coord. Chem. Rev. 2004, 248: 2459 - 15
Otto S.Boccaletti G.Engberts JBFN. J. Am. Chem. Soc. 1998, 120: 4238 - 16 Special feature on solvents: Org.
Process Res. Dev.
2007,
11:
104
- 17
Prasad KR.Anbarasan P. J. Org. Chem. 2007, 72: 3155 - 18
Merino P.Jimenez P.Tejero T. J. Org. Chem. 2006, 71: 4685 - 19
Feske BD.Kaluzna IA.Stewart JD. J. Org. Chem. 2005, 70: 9654 - 20
Garg NK.Caspi DD.Stoltz BM. J. Am. Chem. Soc. 2005, 127: 5970 - 21
Kireev AS.Breithaupt AT.Collins W.Nadein ON.Kornienko A. J. Org. Chem. 2005, 70: 742 - 22
Akai S.Tsujino T.Fukuda N.Iio K.Takeda Y.Kawaguchi K.Naka T.Higuchi K.Kita Y. Org. Lett. 2001, 3: 4015 - 23
Fox ME.Li C.Marino JP.Overman LE. J. Am. Chem. Soc. 1999, 121: 5467 - 24
Zanoni G.Castronovo F.Franzini M.Vidari G.Giannini E. Chem. Soc. Rev. 2003, 32: 115 - 25
Kim YH. Acc. Chem. Res. 2001, 34: 955 - 26
Kawamura M.Kobayashi S. Tetrahedron Lett. 1999, 40: 3213 - 27
Yabu K.Masumoto S.Yamasaki Y.Hamashima M.Kanai WD.Curran D.Shibasaki M. J. Am. Chem. Soc. 2001, 123: 9908 - 28
Sibi MP.Chen J. J. Am. Chem. Soc. 2001, 123: 9472 - 29
Arseniyadis S.Subhash PV.Valleix A.Mathew SP.Blackmond DG.Wagner A.Mioskowski C. J. Am. Chem. Soc. 2005, 127: 6138 - 30
Zhou J.Tang Y. Chem. Commun. 2004, 432 - 31
Kuwano R.Sawamura M.Ito Y. Bull. Chem. Soc. Jpn. 2000, 73: 2571 - 32
Ojima I.Kogure T.Yoda N. J. Org. Chem. 1980, 45: 4728 - 33
Saito R.Naruse S.Takano K.Fukuda K.Katoh A.Inoue Y. Org. Lett. 2006, 8: 2067 ; and references therein - 34
Sibi MP.Gorikunti U.Liu M. Tetrahedron 2002, 58: 8357 - 35
Rajender Reddy K.Rajasekhar CV.Gopi Krishna G. Synth. Commun. 2007, 37: 1971 - 36
Kofoed J.Reymond J.-L.Darbre T. Org. Biomol. Chem. 2005, 3: 1850 - 37
Darbre T.Machuqueiro M. Chem. Commun. 2003, 1090 - 38
Otto S.Engberts JFBN. J. Am. Chem. Soc. 1999, 121: 6798 - 39
Gyarmati J.Hajdu C.Dinya Z.Micskei K.Zucchi C.Pályi G. J. Organomet. Chem. 1999, 586: 106 -
40a
Aplander K.Ding R.Lindström UM.Wennerberg J.Schultz S. Angew. Chem. Int. Ed. 2007, 46: 4543 -
40b
Aplander K.Ding R.Krasavin M.Lindström UM.Wennerberg J. Eur. J. Org. Chem. 2009, 810 -
41a
Aqueous-Phase Organometallic Catalysis
Cornils B.Herrmann WA. Wiley-VCH; Weinheim: 2004. -
41b
Lombardo M.Quintavalla A.Chiarucci M.Trombini C. Synlett 2010, 1746 - 42
Sinou D. Tetrahedron Lett. 1981, 22: 2987 - 43
Harada K.Yoshida T. J. Org. Chem. 1972, 37: 4366 - 44
Buschmann H.Scharf H.-D.Hoffmann N.Esser P. Angew. Chem. Int. Ed. 1991, 30: 477 - 45
Sharp K. Protein Sci. 2001, 10: 661 - 46
Whitesides GM.Simanek EE.Mathias JP.Seto CT.Chin DN.Mammen M.Gordon DM. Acc. Chem. Res. 1995, 28: 37 - 47
Engberts JBFN. In Organic Reactions in WaterLindström UM. Blackwell Publishing; Oxford: 2007. p.29 - 48
Jung Y.Marcus RA. J. Am. Chem. Soc. 2007, 129: 5492 - 49
Pirrung MC. Chem. Eur. J. 2006, 12: 1312 - 50
Rideout DC.Breslow R. J. Am. Chem. Soc. 1980, 102: 7816 - 51
Grieco PA.Yoshida K.Garner P. J. Org. Chem. 1983, 48: 3137 - 52
Otto S.Engberts JBFN. Org. Biomol. Chem. 2003, 1: 2809 - 53
Otto S.Engberts JBFN. Pure Appl. Chem. 2000, 72: 1365 - 54
Breslow R. Acc. Chem. Res. 2004, 37: 471 - 55
Trakhtenberg S.Warner JC. Chem. Rev. 2007, 107: 2174 - 56
Soriente A.Arienzo R.DeRosa M.Palombi M.Spinella A.Scettri A. Green Chem. 1999, 1: 157