References and Notes
1a
Dömling A.
Chem. Rev.
2006,
106:
17
1b
Szymanski W.
Zwolinska M.
Ostaszewski R.
Tetrahedron
2007,
63:
7647
1c
Dömling A.
Ugi I.
Angew. Chem.
Int. Ed.
2000,
39:
3168
2a
Wu JL.
Jiang Y.
Dai WM.
Synlett
2009,
1162
2b
Huang X.
Xu JF.
J. Org. Chem.
2009,
74:
8859
2c
Nikulnikov M.
Tsirulnikov S.
Kysil V.
Ivachtchenko A.
K-Rasavin M.
Synlett
2009,
260
2d
Dai WM.
Shi JY.
Wu JL.
Synlett
2008,
2716
2e
Erb W.
Neuville L.
Zhu JP.
J.
Org. Chem.
2009,
74:
3109
2f
Shaabani A.
Maleki A.
Moghimi-Rad J.
J.
Org. Chem.
2007,
72:
6309
3a
Palacios F.
Alonso C.
Aparicio D.
Rubiales G.
Santos JM.
Tetrahedron
2007,
63:
523
3b
Fresneda PM.
Molina P.
Synlett
2004,
1
3c
Funicello M.
Laboragine V.
Pandolfo R.
Spagnolo P.
Synlett
2010,
77
3d
Hemming K.
Loukou C.
Elkatip S.
Smalley RK.
Synlett
2004,
101
3e
Devarie-Baez NO.
Xian M.
Org. Lett.
2010,
12:
752
3f
Bose DS.
Chary MV.
Synthesis
2010,
643
3g
Kshirsagar UA.
Puranik VG.
Argade NP.
J. Org. Chem.
2010,
75:
2702
4
Corres N.
Delgado JJ.
Garcia-Valverde M.
Marcaccini S.
Rodriguez T.
Rojo J.
Torroba T.
Tetrahedron
2008,
64:
2225
5
Sanudo M.
Garcia-Valverde M.
Marcaccini S.
Delgado JJ.
Rojo J.
Torroba T.
J. Org. Chem.
2009,
74:
2189
6
Lecinska P.
Corres N.
Moreno D.
Garcia-Valverde M.
Marcaccini S.
Torroba T.
Tetrahedron
2010,
66:
6783
7
He P.
Wu J.
Nie YB.
Ding MW.
Tetrahedron
2009,
65:
8563
8a
He P.
Wu J.
Nie YB.
Ding MW.
Eur.
J. Org. Chem.
2010,
1088
8b
Zhong Y.
Wang L.
Ding MW.
Tetrahedron
2011,
67:
3714
9
He P.
Nie YB.
Wu J.
Ding MW.
Org. Biomol. Chem.
2011,
9:
1429
10a
Liu MG.
Hu YG.
Ding MW.
Tetrahedron
2008,
64:
9052
10b
Huang NY.
Liang YJ.
Ding MW.
Fu LW.
He HW.
Bioorg. Med. Chem. Lett.
2009,
19:
831
10c
Huang NY.
Liu MG.
Ding MW.
J. Org. Chem.
2009,
74:
6874
10d
Huang NY.
Nie YB.
Ding MW.
Synlett
2009,
611
10e
Li WJ.
Zhao FF.
Ding MW.
Synlett
2011,
265
10f
Li WJ.
Liu S.
He P.
Ding MW.
Tetrahedron
2010,
66:
8151
11
Nicolaou KC.
Lizos DE.
Kim DW.
Schlawe D.
de Noronha RG.
Longbottom DA.
Rodriquez M.
Bucci M.
Cirino G.
J.
Am. Chem. Soc.
2006,
128:
4460
12
Pirrung MC.
Tumey LN.
McClerren AL.
Raetz
CRH.
J.
Am. Chem. Soc.
2003,
125:
1575
13
Einsiedel J.
Hubner H.
Gmeiner P.
Bioorg.
Med. Chem. Lett.
2001,
11:
2533
14a
Campiani G.
De Angelis M.
Armaroli S.
Fattorusso C.
Catalanotti B.
Ramunno A.
Nacci V.
Novellino E.
Grewer C.
Ionescu D.
Rauen T.
Griffiths R.
Sinclair C.
Fumagalli E.
Mennini T.
J. Med. Chem.
2001,
44:
2507
14b
Kline T.
Andersen NH.
Harwood EA.
Bowman J.
Malanda A.
Endsley S.
Erwin AL.
Doyle M.
Fong S.
Harris AL.
Mendelsohn B.
Mdluli K.
Raetz CRH.
Stover CK.
Witte PR.
Yabannavar A.
Zhu S.
J. Med. Chem.
2002,
45:
3112
14c
Einsiedel J.
Hübner H.
Gmeiner P.
Bioorg.
Med. Chem. Lett.
2001,
11:
2533
15a
Pirali T.
Tron GC.
Masson G.
Zhu JP.
Org.
Lett.
2007,
5275
15b
Fan L.
Adams AM.
Polisar JG.
Ganem B.
J. Org. Chem.
2008,
73:
9720
16a
Voronkov MV.
Gontcharov AV.
Wang ZM.
Richardson PF.
Kolb HC.
Tetrahedron
2004,
60:
9043
16b
Lee SH.
Qi X.
Yoon JY.
Nakamura K.
Lee YS.
Tetrahedron
2002,
58:
2777
17
De Moliner F.
Crosignani S.
Banfi L.
Riva R.
Basso A.
J.
Comb. Chem.
2010,
12:
613
18
Preparation of
Chlorides 1 via Passerini Reaction
To a solution of
chloroacetaldehyde (40% soln in H2O, 0.50 mL,
3 mmol) in MeOH (15 mL) was added sequentially acid (3 mmol) and
isocyanide (3 mmol) at r.t. After the reaction was complete at ambient
temperature (monitoring by TLC), the solvent was removed under reduced
pressure, and the residue was recrystallized from Et2O-PE
to obtain the chloride 1.
Spectral Data for Compound 1a
White
crystals; mp 141-142 ˚C. IR (KBr): 3310, 3087, 2983,
1732, 1670, 1561, 1263, 1123, 711 cm-¹. ¹H
NMR (600 MHz, CDCl3): δ = 8.10 (d, J = 7.8 Hz,
2 H, ArH), 7.67-7.51 (m, 3 H, ArH), 6.11 (s, 1 H, NH),
5.58 (t, J = 3.6
Hz, 1 H, COCH), 4.15-3.95 (m, 2 H, ClCH2), 1.39
(s, 9 H, 3 CH3) ppm. MS: m/z (%) = 283
(1) [M+], 211 (5), 122 (9),
105 (100), 77 (21). Anal. Calcd for C14H18ClNO3:
C, 59.26; H, 6.39; N, 4.94. Found: C, 59.34; H, 6.58; N, 4.82.
19
5-Carboxamide-oxazolines
4
A mixture of chloride 1 (1
mmol) and NaN3 (0.13 g, 2 mmol) was stirred for 2 h at
100 ˚C in anhyd DMF (10 mL). After the completion of the
reaction (monitoring by TLC), the reaction mixture was filtered,
the residue was concentrated in vacuo, and toluene (10 mL) was added.
Then Ph3P (0.26 g, 1 mmol) in toluene (5 mL) was added
dropwise at r.t. The reaction mixture was stirred for 2 h at r.t.
and then for additional hours (Table
[²]
)
at refluxing temperature. The solvent was removed off under reduced
pressure, and the residue was purified by silica gel chromatography
(hexanes-EtOAc = 3:1) to afford 5-carboxamide-oxazolines 4 in moderate to good yields.
Spectral Data for Compounds 4a
White
crystals; mp 106-107 ˚C. IR (KBr): 3290, 3091, 2968,
1725, 1672, 1649, 1543, 1263, 717, 694 cm-¹. ¹H NMR
(600 MHz, CDCl3): δ = 7.97 (d, J = 7.8 Hz,
2 H, ArH), 7.56-7.45 (m, 3 H, ArH), 6.17 (s, 1 H, NH),
4.95-4.91 (m, 1 H, COCH), 4.42-4.14 (m, 2 H, NCH2),
1.34 (s, 9 H, 3 CH3) ppm. ¹³C
NMR (150 MHz, CDCl3): δ = 169.6, 162.4,
131.6, 128.5, 128.00, 127.9, 126.9, 59.5, 51.1, 28.5 ppm. MS: m/z (%) = 246
(2) [M+], 146 (23), 105 (100),
77 (34). Anal. Calcd for C14H18N2O2:
C, 68.27; H, 7.37; N, 11.37. Found: C, 67.92; H, 7.54; N, 11.65.