RSS-Feed abonnieren
DOI: 10.1055/s-0031-1289869
Easy Access to (E)-β-Ocimene
Publikationsverlauf
Publikationsdatum:
14. November 2011 (online)
Abstract
β-Ocimene is one of the most common monoterpenes found in Nature, but a simple and reliable synthesis of the pure E-isomer has been missing. Here, we report a simple procedure involving a Grignard coupling as the key step that allows its synthesis on gram scales. The configuration of the double bond is fixed in the starting material.
Key words
terpenoids - Grignard reaction - alkenes - hydrocarbons - coupling
- Supporting Information for this article is available online:
- Supporting Information
- 1
Knudsen J.Eriksson R.Gershenzon J.Ståhl B. Botan. Rev. 2006, 72: 1 - 2
Honda K.Omura H.Hori M.Kainoh Y. In Comprehensive Natural Products II Vol. 4:Mander LN.Liu H.-W. Elsevier; Oxford: 2010. p.563 - 3
Kessler D.Baldwin IT. Plant J. 2007, 49: 840 -
4a
Pare PW.Tumlinson JH. Plant Physiol. 1997, 114: 1161 -
4b
Navia-Gine WG.Yuan JS.Mauromoustakos A.Murphy JB.Chen F.Korth KL. Plant Physiol. Biochem. (Issy-les-Moulineaux, Fr.) 2009, 47: 416 -
5a
Kost C.Heil M. J. Ecol. 2006, 94: 619 -
5b
Piesik D.Lyszczarz A.Tabaka P.Lamparski R.Bocianowski J.Delaney KJ. Ann. Appl. Biol. 2010, 157: 425 - 6
Khan ZR.James DG.Midega CAO.Pickett JA. Biol. Control 2008, 45: 210 -
7a
Du Y.Poppy GM.Powell W.Pickett JA.Wadhams LJ.Woodcock CM. J. Chem. Ecol. 1998, 24: 1355 -
7b
Mumm R.Dicke M. Can. J. Zool. 2010, 88: 628 - 8
Schulz S.Estrada C.Yildizhan S.Boppré ML.Gilbert E. J. Chem. Ecol. 2008, 34: 82 - 9
Keegans SJ.Billen J.Morgan ED.Gokcen OA. J. Chem. Ecol. 1993, 19: 2705 - 10
Matsushita H.Negishi E. J. Org. Chem. 1982, 47: 4161 - 11
Lee PH.Shim E.Lee K.Seomoon D.Sundae K. Bull. Korean Chem. Soc. 2005, 26: 157 - 12
Keinan E.Kumar S.Dangur V.Vaya J. J. Am. Chem. Soc. 1994, 116: 11151 -
13a
Majetich G.Hicks R.Okha F. New J. Chem. 1999, 23: 129 -
13b
Singh SA.Kabiraj S.Khandare RP.Nalawade SP.Upar KB.Bhat SV. Synth. Commun. 2010, 40: 74 -
13c
Reddy PV.Bhat SV. J. Indian Chem. Soc. 1998, 75: 10 -
14a
Tanaka S.Yasuda A.Yamamoto H.Nozaki H.
J. Am. Chem. Soc. 1975, 97: 3252 -
14b
Yasuda A.Tanaka S.Yamamoto H.Nozaki H. Bull. Chem. Soc. Jpn. 1979, 52: 1752 - 15
Wu Z.Wouters J.Poulter CD. J. Am. Chem. Soc. 2005, 127: 17433 - 16
Williams CM.Mander LN. Tetrahedron 2001, 57: 425
References and Notes
Ethyl (
E
)-3-Methylpenta-2,4-dienoate(2): A solution of
n-butyllithium (1.6 M in
hexane, 14.4 mL, 23 mmol) was added dropwise at -78 ˚C
to a solution of methyltriphenyl-phosphonium bromide (8.1 g, 22.7
mmol) in absolute THF (75 mL). The mixture was brought to 0 ˚C
and stirred for 1 h. After cooling to -78 ˚C,
ethyl (E)-3-methyl-4-oxo-2-butenoate
(1; 3 g, 21.1 mmol) dissolved in absolute
THF (30 mL) was added slowly. The mixture was stirred for 24 h at r.t.,
hydrolyzed with water, and extracted three times with Et2O.
The combined organic phases were dried with MgSO4 and
the solvent was removed. The residue was purified by flash chromatography
(pentane-Et2O, 40:1) to give 2 (83% yield,
2.43 g, 17.3 mmol). TLC: R
f
= 0.24
(pentane-Et2O, 40:1); ¹H NMR
(400 MHz, CDCl3): = 6.30-6.37
(ddd, J = 17.4, 10.6, 0.8 Hz,
1 H, CH), 5.74-5.71 (m, 1 H, CH), 5.54 (d, J = 17.4 Hz, 1 H, CH),
5.31 (d, J = 10.6 Hz, 1 H,
CH), 4.11 (q, J = 7.2 Hz, 2 H,
CH2), 2.20 (d, J = 1.3
Hz, 3 H, CH3), 1.22 (t, J = 7.1
Hz, 3 H, CH3); ¹³C NMR
(100 MHz, CDCl3): δ = 167.0
(s), 151.9 (s), 140.2 (d), 120.0 (d), 119.3 (t), 59.8 (t), 14.3
(q), 13.1 (q); MS (EI, 70 eV): m/z (%) = 140 (54)[M+],
112 (78), 111 (76), 97 (41), 96 (12), 95 (100), 83 (10), 69 (17),
67 (91), 66 (27), 65 (35), 56 (12), 55 (13), 51 (13), 41 (60), 40
(13), 39 (57).
(
E
)-3-Methylpenta-2,4-dien-1-ol (3): Ethyl (E)-3-methylpenta-2,4-dienoate
(2; 2.18 g, 15.57 mmol) was added to a
suspension of LiAlH4 (913 mg, 24 mmol) in absolute Et2O
(45 mL) under a N2 atmosphere. The mixture was heated
to reflux for 1 h and quenched by the addition of ice-cooled H2O.
The residue formed was dissolved by addition of 10% H2SO4.
The phases were separated and the aqueous phase was washed with
Et2O. The combined organic phases were dried with MgSO4 and
the solvent was removed in vacuo. The residue of (E)-3-methylpenta-2,4-dien-1-ol
(3; 1.53 g, 15.57 mmol, 100% yield)
was sufficiently pure for use in the next step. ¹H NMR
(400 MHz, CDCl3): δ = 6.45-6.33
(m, 1 H, CH), 5.73-5.63 (m, 1 H, CH),
5.22 (d, J = 16.9 Hz, 1 H,
CH), 5.07 (d, J = 10.6 Hz, 1 H,
CH), 4.29 (d, J = 6.8 Hz, 2 H,
CH2), 1.82-1.77 (m, 3 H, CH3),
1.45 (br. s., 1 H, OH); ¹³C NMR
(100 MHz, CDCl3): δ = 140.7
(d), 136.4 (s), 130.4 (d), 113.2 (t), 59.4 (t), 11.8 (q); MS (EI,
70 eV): m/z (%) = 98
(30)[M+], 97 (11), 83 (83),
80 (23), 79 (44), 70 (37), 69 (85), 65 (17), 55 (100), 53 (47),
51 (27), 43 (35), 41 (81), 39 (70).
(
E
)-5-Bromo-3-methylpenta-1,3-diene
(4): Tribromophosphine (1.5 mL, 4.2 g,
15 mmol) was added dropwise at 0 ˚C to a solution
of (E)-3-methylpenta-2,4-dien-1-ol (3; 2.67 g, 27.2 mmol) in absolute Et2O
(100 mL) under a N2 atmosphere. An additional identical
portion of tribromophosphine was added after 30 min if starting material
was still present (TLC). After 30 min, the mixture was diluted by
addition of Et2O (50 mL) and hydrolyzed by addition of
brine (100 mL). The organic phase was separated and dried with MgSO4.
The resulting (E)-5-bromo-3-methylpenta-1,3-diene
(4; 4.38 g, 27.2 mmol, 10.2 mmol, 100% yield)
was sufficiently pure for use in the next step. Because of its instability
during purification, the compound was directly used in the following
coupling reaction. The
E/Z ratio was 97:3 (GC). ¹H NMR
(400 MHz, CDCl3): δ = 6.37
(ddd, J = 17.4, 10.7, 0.8 Hz,
1 H, CH), 5.78 (t, J = 8.8
Hz, 1 H, CH), 5.30 (d, J = 17.4
Hz, 1 H, CH), 5.12 (d,
J = 10.6
Hz, 1 H, CH), 4.13 (d, J = 8.8
Hz, 2 H, CH2), 1.84 (d, J = 1.3
Hz, 3 H, CH3); ¹³C NMR
(100 MHz, CDCl3): δ = 140.1
(d), 139.8 (s), 126.7 (d), 114.8 (t), 28.9 (t), 11.4 (q); MS (EI,
70 eV): m/z (%) = 162
(5), 160 (5), 82 (7), 81 (100), 80 (11), 79 (33), 77 (9), 66 (9),
65 (8), 55 (5), 53 (27), 52 (7), 51 (11), 50 (8), 41 (21), 39 (18).
(
E
)-β-Ocimene
(5):
A solution of (E)-5-bromo-3-methyl-penta-1,3-diene
(4; 4.38 g, 27.2 mmol) in absolute 1,2-dimethoxyethane
(8 mL) was treated with dilithium tetrachlorocuprate(II) (0.1 M in THF, 10.8 mL, 1.08 mmol). A solution
of 2-methyl-1-propenylmagnesium bromide (0.5 M in
THF, 70 mL, 35 mmol) was added at 0 ˚C and the mixture
was stirred for 45 min. After an additional stirring period of 18
h at r.t., ice-cooled H2O was added. The organic phase
was washed with sat. NH4Cl, and the aqueous phase was
extracted three times with pentane. The combined organic phases
were dried with MgSO4 and the solvent was removed. The
product was purified by flash chromatography on silica(pentane).
Pure (E)-β-ocimene (2.53 g,
18.6 mmol, 68% yield) was obtained in an E/Z ratio of 96:4 (GC). If needed, the E/Z ratio
can be further enhanced by using argentation chromatography (5% AgNO3 on
silica in the dark) with pentane as solvent, but significant loss
of material has to be considered. TLC: R
f
= 0.75
(pentane); ¹H NMR (400 MHz, CDCl3): δ = 6.42-6.31
(m, 1 H, CH), 5.45 (t, J = 7.5 Hz,
1 H, CH), 5.15-5.05 (m, 2 H, 2 × CH),
4.93 (d, J = 10.9 Hz, 1 H,
CH), 2.82 (t, J = 7.2 Hz, 2 H,
CH2), 1.78-1.74 (m, 3 H, CH3),
1.70 (d, J = 1.3 Hz, 3 H,
CH3), 1.64 (d, J = 0.6
Hz, 3 H, CH3); ¹³C NMR
(100 MHz, CDCl3, TMS): δ = 141.5
(d), 133.7 (s), 132.2 (s), 131.8 (d), 122.2 (d), 110.6
(t), 27.3 (t), 25.7 (q), 17.7 (q), 11.6 (q); MS (EI, 70 eV): m/z (%) = 136
(6), 121 (17), 107 (8), 105 (21), 93 (100), 92 (25), 91 (55), 80
(33), 79 (51), 77 (42), 67 (13), 65 (12), 53 (20), 51 (11), 41 (32),
39 (32).