RSS-Feed abonnieren
DOI: 10.1055/s-0031-1289909
4-Chloro-3-iodoquinoline as a Synthon in the Development of New Syntheses of 1,2-Disubstituted 1H-Pyrrolo[3,2-c]quinolines
Publikationsverlauf
Publikationsdatum:
28. November 2011 (online)
Abstract
New syntheses of novel 1,2-pyrrolo[3,2-c]quinolines were established using 4-chloro-3-iodoquinoline as a synthon. The approach involved a palladium-catalyzed Sonogashira reaction of 4-chloro-3-iodoquinoline with appropriate arylacetylenes, followed by nucleophilic displacement of chlorine and cyclization. Studies on the reaction of 4-chloroquinoline derivatives with sodium azide led to the unexpected 4-aminoquinolines.
Key words
pyrrolo[3,2-c]quinoline - Sonogashira reaction - nucleophilic substitution reaction - dihaloquinolines - 4-aminoquinolines
- 1
Witherup KM.Ransom RW.Graham AC.Bernard AM.Salvatore MJ.Lumma WC.Anderson PS.Pitzenberger SM.Varga SL. J. Am. Chem. Soc. 1995, 117: 6682 - 2
Okanya PW.Mohr KI.Gerth K.Jansen R.Müller R. J. Nat. Prod. 2011, 74: 603 - 3
Ferlin MG.Marzano C.Via LD.Chilin A.Zagotto G.Guiotto A.Moro S. Bioorg. Med. Chem. 2005, 13: 4733 - 4
Metobo S.Mish M.Jin H.Jabri S.Lansdown R.Chen X.Tsiang M.Wright M.Kim CU. Bioorg. Med. Chem. Lett. 2009, 19: 1187 - 5
Marquez VE.Cranston JW.Ruddon RW.Kier LB.Burckhalter JH. J. Med. Chem. 1972, 15: 36 - 6
Helissey P.Parrot-Lopez H.Renault J.Cros S.Pauletti C. Eur. J. Med. Chem. 1987, 22: 277 - 7
Brown TH.Ife RJ.Keeling DJ.Laing SM.Leach CA.Parsons ME.Price CA.Reavill DR.Wiggall KJ. J. Med. Chem. 1990, 33: 527 -
8a
Leach CA.Brown TH.Ife RJ.Keeling DJ.Laing SM.Parsons ME.Price CA.Wiggall KJ. J. Med. Chem. 1992, 35: 1845 -
8b
Abass M. Heterocycles 2005, 65: 901 ; and references cited therein - 9
Heidempergher F.Pevarello P.Pillan A.Pinciroli V.Della Torre A.Speciale C.Marconi M.Cini M.Toma S.Greco F.Varasi M. Farmaco 1999, 54: 152 - 10
Kang SK.Park SS.Kim SS.Choi J.-K.Yum EK. Tetrahedron Lett. 1999, 40: 4379 - 11
Koradin C.Dohle W.Rodriguez AL.Schmid B.Knochel P. Tetrahedron 2003, 59: 1571 -
12a
Nyerges M. Heterocycles 2004, 63: 1685 -
12b
Colacino E.Benakki H.Gunoum F.Martinez J.Lamaty F. Synth. Commun. 2009, 39: 1571 - 13
Mphahlele MJ.Lesenyeho LG.Makelane HR. Tetrahedron 2010, 66: 6040 -
14a
Almeida AIS.Silva VLM.Silva AMS.Pinto DCGA.Cavaleiro JAS. Synlett 2008, 2593 -
14b
Almeida AIS.Silva AMS.Cavaleiro JAS. Synlett 2010, 462 -
14c
Seixas RSGR.Silva AMS.Cavaleiro JAS. Synlett 2010, 2257 -
14d
Silva VLM.Silva AMS.Cavaleiro JAS. Synlett 2010, 2565 - 15
Sonogashira K. J. Organomet. Chem. 2002, 653: 46 - 16
Sonogashira K.Tohda Y.Hagihara N. Tetrahedron Lett. 1975, 4467 - 18 For the preparation of 3-iodoquinolin-4
(1H)-one (1),
see:
Almeida AIS.Silva AMS.Cavaleiro JAS. Synlett 2010, 462 -
29a
L’abbe G. Chem. Rev. 1969, 69: 345 -
29b
Budyka MF.Kantor MM.Pleshkova AP. Russ. Chem. Bull. 1990, 39: 605 -
29c
Arenas JF.Marcos JI.Otero JC.Tocón IL.Soto J. Int. J. Quantum Chem. 2001, 84: 241
References and Notes
4-Chloro-3-iodoquinoline
(2): Mp 91-92 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 7.63 (ddd, J = 8.0, 7.0, 1.0 Hz,
1 H, H-6), 7.79 (ddd, J = 8.0,
7.0, 1.1 Hz, 1 H, H-7), 8.10 (d, J = 8.0 Hz,
1 H, H-8), 8.27 (dd, J = 8.0,
1.1 Hz, 1 H, H-5), 9.16 (s, 1 H, H-2); ¹³C
NMR (75 MHz, CDCl3): δ = 95.0 (C-3), 124.9
(C-5), 127.6 (C-4a), 128.5 (C-6), 129.8 (C-8), 130.6 (C-7), 146.0
(C-4), 147.6 (C-8a), 156.5 (C-2). MS (ESI+):
m/z (%) = 289
(100) [M + H]+. HRMS
(ESI+): m/z calcd for [C9H5ClIN + H]+:
289.9233; found: 289.9235
Optimized procedure for the synthesis of 4-chloro-3-iodoquinoline (2): POCl3 (2.04 mL, 22.08 mmol) was added to a solution of 3-iodoquinolin-4 (1H)-one (1; 200 mg, 0.74 mmol) in anhyd DMF (4 mL), in an ice bath. After the addition, the reaction mixture was stirred at 80 ˚C, under an N2 atmosphere for 1.5 h. Then the reaction mixture was poured into H2O (50 mL) and ice (20 g) and neutralized with NaHCO3. The obtained solid was filtered, taken in EtOAc (50 mL) and washed with H2O (3 × 50 mL). The organic layer was dried with anhyd Na2SO4 and evaporated to dryness. The residue was recrystallized (CH2Cl2-light petroleum) to give 4-chloro-3-iodoquinoline (2; 137.1 mg, 67%) as a pale-yellow solid.
20
Optimized procedure
for the synthesis of 3-(arylethynyl)-4-chloroquinolines 4a-c: [Pd(PPh3)4]
(21.2
mg, 0.018 mmol), CuI (3.3 mg, 0.014 mmol) and the appropriate alkyne 3a-c (0.67
mmol) were added to a solution of 4-chloro-3-iodoquinoline (2; 106 mg, 0.366 mmol) in a MeCN-Et3N
(2:1) mixture. The reaction mixture was stirred at r.t. for 4 h
(to obtain 4a) or 20 h (to obtain 4b/4c),
under an N2 atmosphere. After that period, the mixture was
poured into H2O (25 mL), neutralized with dilute aqueous
solution of HCl, and the organic layer was extracted with EtOAc
(3 × 50 mL), dried with anhyd Na2SO4,
and concentrated. The crude product was purified by preparative thin
layer chromatography (light petroleum-EtOAc, 56:4). 3-(Arylethynyl)-4-chloroquinolines 4a-c were
obtained without recrystallization (4a:
82.0 mg, 85%; 4b: 80.6 mg, 75%; 4c: 64.4 mg, 57%) as yellow solids.
In addition, 10 and 18% of starting material were recovered
for derivatives 3b and 3c,
respectively.
4-Chloro-3-[(4-methoxyphenyl)ethynyl]quinoline (4b). Mp 110-111 ˚C. ¹H NMR (500 MHz, CDCl3): δ = 3.86 (s, 3 H, 4′′-OCH3), 6.93 (d, J = 8.9 Hz, 2 H, H-3′′,5′′), 7.59 (d, J = 8.9 Hz, 2 H, H-2′′,6′′), 7.68 (ddd, J = 7.9, 7.1, 0.5 Hz, 1 H, H-6), 7.76 (ddd, J = 8.0, 7.1, 1.1 Hz, 1 H, H-7), 8.11 (d, J = 8.0 Hz, 1 H, H-8), 8.27 (d, J = 7.9 Hz, 1 H, H-5), 8.95 (s, 1 H, H-2); ¹³C NMR (125 MHz, CDCl3): δ = 55.4 (4′′-OCH3), 83.2 (C-1′), 98.1 (C-2′), 114.4 (C-3′′,5′′), 114.7 (C-1′′), 117.9 (C-3), 124.3 (C-5), 126.0 (C-8a), 128.2 (C-6), 129.8 (C-4a), 130.4 (C-7), 133.8 (C-2′′,6′′), 142.7 (C-4), 147.2 (C-9), 151.9 (C-2), 160.3 (C-4′′). MS (ESI+): m/z (%) = 294 (100) [M + H]+. HRMS (ESI+): m/z calcd for [C18H12ClNO + H]+: 294.0686; found: 294.0689.
22Physical data of 4-[(2-phenylethyl)amino]-3-[(4-nitrophenyl)ethynyl]quinoline (6c). Mp (dp) 189-190 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 3.10 (t, J = 6.7 Hz, 2 H, H-2′′′), 4.40 (dt, J = 6.7, 6.5 Hz, 2 H, H-1′′′), 5.39 (br s, 1 H, NH), 7.25-7.33 (m, 5 H, 2′′′-Ph), 7.41-7.48 (m, 1 H, H-6), 7.49 (d, J = 8.8 Hz, 2 H, H-2′′,6′′), 7.63-7.69 (m, 1 H, H-7), 7.72 (d, J = 8.5 Hz, 1 H, H-5), 7.98 (d, J = 8.5 Hz, 1 H, H-8), 8.19 (d, J = 8.8 Hz, 2 H, H-3′′,5′′), 8.66 (s, 1 H, H-2); ¹³C NMR (75 MHz, CDCl3): δ = 36.7 (C-2′′′), 47.1 (C-1′′′), 93.1 (C-1′ or C-2′), 93.3 (C-1′ or C-2′), 96.7 (C-3), 118.7 (C-4a), 120.5 (C-5), 123.7 (C-3′′,5′′), 125.7 (C-6), 127.0 (C-4′′′′), 128.8 (C-2′′′′,6′′′′ or C-3′′′′,5′′′′), 128.9 (C-2′′′′,6′′′′ or C-3′′′′,5′′′′), 130.2 (C-8), 130.3 (C-7), 131.4 (C-2′′,6′′), 131.8 (C-1′′), 137.8 (C-1′′′′), 146.7 (C-4′′), 148.0 (C-8a), 151.1 (C-4), 154.4 (C-2). MS (ESI+): m/z (%) = 394 (100) [M + H]+. HRMS (ESI+): m/z calcd for [C25H19N3O2 + H]+: 394.1556; found: 394.1540.
23Optimized procedure for the synthesis of 3-(arylethynyl)-4-[(2-phenylethyl)amino]quinolines 6a-c: A mixture of 3-(arylethynyl)-4-chloroquinolines 4a-c (0.288 mmol) and 2-phenylethylamine (5; 2.9 mL, 2.88 mmol) was stirred at 60 ˚C for 24 h, under an N2 atmosphere. The mixture was poured into H2O (50 mL), neutralized with a dilute aqueous solution of HCl, and the organic layer was extracted with EtOAc (3 × 50 mL), dried with anhyd Na2SO4, and concentrated. The residue was purified by preparative thin layer chromatography (CH2Cl2-acetone, 36:04). 3-(Arylethynyl)-4-[(2-phenylethyl)amino]-quinolines 6a-c were obtained without recrystallization (6a: 67.0 mg, 67%; 6b: 70.8 mg, 65%; 6c: 73.7 mg, 60%) as yellow solids.
24
Optimized procedure
for the synthesis of 2-aryl-1-(2-phenylethyl)-1
H
-pyrrolo[3,2-
c
]quinolines
7a-c:
A mixture of 3-(arylethynyl)-4-[(2-phenylethyl)amino]-quinolines 6a-c (0.138
mmol) and CuI (5.23 mg, 0.0276 mmol) in anhyd toluene (4 mL) was
stirred at 120 ˚C, under an N2 atmosphere
for 20 h (6a) or 24 h
(6b). After that period, the solvent was
evaporated and the residue was taken up in EtOAc and purified by
preparative thin layer chromatography (CH2Cl2-acetone,
36:4). Recrystallization (light petroleum-CH2Cl2)
gave 2-aryl-1-(2-phenylethyl)-1H-pyrrolo[3,2-c]quinolines 7a/7b as yellow solids (7a: 40.8
mg, 85%, 7b: 31.3 mg, 60%).
In the case of 7c, anhyd 1,2,4-trichlorobenzene
(3 mL) was used at 160 ˚C for 6 h, under
an N2 atmosphere. The crude material was purified by silica
gel column chromatography (light petroleum to remove the TCB, then
CH2Cl2-acetone, 5:1) to give purified 7c (21.7 mg, 40%) as a brown oil.
Physical data of 1-(2-phenylethyl)-2-(4-methoxyphenyl)-1 H -pyrrolo[3,2- c ]quinoline (7b). Mp 143-144 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 3.10 (t, J = 7.4 Hz, 2 H, H-2′′), 3.90 (s, 3 H, 4′-OCH3), 4.76 (t, J = 7.4 Hz, 2 H, H-1′′), 6.65 (s, 1 H, H-3), 6.82-6.86 (m, 2 H, H-2′′′,6′′′), 6.97 (d, J = 8.8 Hz, 2 H, H-3′,5′), 7.17-7.23 (m, 3 H, H-3′′′,4′′′,5′′′), 7.19 (d, J = 8.8 Hz, 2 H, H-2′,6′), 7.64-7.69 (m, 2 H, H-7, H-8), 8.29-8.33 (m, 1 H, H-6), 8.43-8.46 (m, 1 H, H-9), 9.19 (s, 1 H, H-4); ¹³C NMR (75 MHz, CDCl3): δ = 36.3 (C-2′′), 47.7 (C-1′′), 55.4 (4′-OCH3), 103.0 (C-3), 113.8 (C-3′,5′), 118.8 (C-9a), 120.5 (C-9), 121.7 (C-3a), 124.4 (C-1′), 125.9 (C-7 and C-8), 126.8 (C-4′′′), 128.6 (C-2′′′,6′′′ and C-3′′′,5′′′), 130.9 (C-6), 131.4 (C-2′,6′), 133.7 (C-9b), 137.3 (C-1′′′), 141.8 (C-2), 144.7 (C-5a), 146.3 (C-4), 159.8 (C-4′). MS (ESI+): m/z (%) = 379 (100) [M + H]+. HRMS (ESI+): m/z calcd for [C26H22N2O + H]+: 379.1810; found: 379.1806.
26Physical data of 1-(4-methoxyphenyl)-2-phenyl-1 H -pyrrolo[3,2- c ]quinoline (12a). Mp 171-171 ˚C. ¹H NMR (300 MHz, CD3OD): δ = 3.92 (s, 3 H, 4′′-OCH3), 7.09 (s, 1 H, H-3), 7.12 (d, J = 8.9 Hz, 2 H, H-3′′, 5′′), 7.25-7.31 (m, 5 H, H-8, H-9, H-4′, H-2′′,6′′), 7.35-7.39 (m, 4 H, H-2′,3′,5′,6′), 7.54-7.59 (m, 1 H, H-7), 8.10 (d, J = 8.4 Hz, 1 H, H-6), 9.15 (s, 1 H, H-4); ¹³C NMR (75 MHz, CD3OD): δ = 46.6 (4′′-OCH3), 95.0 (C-3), 106.5 (C-3′′, 5′′), 110.1 (C-9a), 112.5 (C-9), 112.9 (C-3a), 117.2 (C-8), 118.1 (C-7), 119.5 (C-4′), 119.7 (C-2′′, 6′′), 120.3 (C-6), 121.3 (C-3′, 5′), 122.3 (C-2′, 6′), 123.6 (C-1′ or C-1′′), 123.7 (C-1′ or C-1′′), 127.9 (C-9b), 134.5 (C-2), 135.7 (C-5a), 137.3 (C-4), 152.4 (C-4′′). MS (ESI+): m/z (%) = 251 (100) [M + H]+. HRMS (ESI+): m/z calcd for [C24H18N2O + H]+: 251.1497; found: 251.1498.
27Optimized procedure for the synthesis of 4-amino-3-(phenylethynyl)quinoline (13). NaN3 (61.8 mg, 0.95 mmol) was added to a solution of 4-chloro-3-(phenyl-ethynyl)quinoline (4a; 50 mg, 0.19 mmol) in anhyd DMF (2 mL) and the mixture was stirred at 120 ˚C, under an N2 atmosphere for 1.3 h. After that period, the mixture was added into H2O (50 mL) and ice (20 g), neutralized with dilute aqueous HCl solution, and the organic layer was extracted with EtOAc (3 × 50 mL), dried with anhyd Na2SO4, and concentrated. The residue was taken up in acetone and purified by preparative thin layer chromatography using CH2Cl2 as solvent. 4-Amino-3-(phenylethynyl)quinoline (13; 33.4 mg, 72%) was obtained after recrystallization (CH2Cl2-light petroleum) as an off-white solid.
28
Physical data
of 4-amino-3-(phenylethynyl)quinoline (13). Mp 205-206 ˚C. ¹H
NMR (300 MHz, acetone-d
6):
δ = 6.74
(s, 2 H, NH2), 7.41-7.47 (m, 3 H,
H-3′′,4′′,5′′),
7.51 (ddd, J = 8.0,
7.0, 1.1 Hz, 1 H, H-6), 7.64-7.72 (m,
3 H, H-7, H-2′′,6′′),
7.91 (d, J = 8.7 Hz,
1 H, H-8), 8.26 (d, J = 8.0 Hz,
1 H, H-5), 8.60 (s, 1 H, H-2); ¹³C
NMR (75 MHz, acetone-d
6): δ = 85.2
(C-1′), 97.2 (C-2′), 98.1 (C-3), 118.2 (C-4a),
122.6 (C-5), 124.3 (C-1′′), 125.8 (C-6), 129.1 (C-4′′),
129.3 (C-3′′, 5′′), 130.4 (C-7),
130.5 (C-8), 132.2 (C-2′′, 6′′),
148.9 (C-8a), 152.7 (C-4), 152.9 (C-2). MS (ESI+): m/z (%) = 245
(100) [M + H]+. HRMS
(ESI+): m/z calcd for [C17H12N2 + H]+:
245.1079; found: 245.1064.