Subscribe to RSS
DOI: 10.1055/s-0031-1290139
Development of a Near Infrared Fluorescence Labeling Reagent: Synthesis of Indole-Functionalized Indocyanine Green Derivatives
Publication History
Publication Date:
03 January 2012 (online)
Abstract
We have demonstrated a facile synthesis of functionalized indocyanine green (ICG) derivatives. Heteroatom-substituted indolenine was synthesized via SNAr reaction of 5-chloro-2,4-dinitroanisole with 1,2-dimethyl-1-propenyl trimethylsilyl ether followed by reduction of the nitro groups. After the introduction of hydrophilic butanesulfonate moieties, homo- and heterocondensations with glutaconaldehyde dianilide provided symmetrical and unsymmetrical ICG derivatives, which exhibit near infrared (NIR) absorption and fluorescence emission similar to those of ICG. NIR fluorescence labeling reagent was synthesized using the amino group in the ICG derivative. The 1,3-dipolar cycloaddition with benzyl azide was performed utilizing copper nanoparticles toward a versatile method for the synthesis of NIR molecular imaging probes.
Key words
cycloaddition - indoles - nucleophilic aromatic substitution - indocyanine green - near infrared fluorescence
- Supporting Information for this article is available online:
- Supporting Information
- 1
Caesar J.Shaldon S.Chiandussi L.Guevara L.Sheriock S. Clin. Sci. 1961, 21: 43 - 2
Flanagan JH.Khan SH.Menchen S.Soper SA.Hammer RP. Bioconjugate Chem. 1997, 8: 751 - 3
Licha K.Riefke B.Ntziachristos V.Becker A.Chance B.Semmler W. Photochem. Photobiol. 2000, 72: 392 - 4
Lin Y.Weissleder R.Tung C.-H. Bioconjugate Chem. 2002, 13: 605 -
5a
Achilefu S.Jimenez HN.Dorshow RB.Bugaj JE.Webb EG.Wilhelm RR.Rajagopalan R.Johler J.Erion JL. J. Med. Chem. 2002, 45: 2003 -
5b
Zhang Z.Berezin MY.Kao JLF.d’Avignon A.Bai M.Achilefu S. Angew. Chem. Int. Ed. 2008, 47: 3584 -
5c
Pu Y.Wang WB.Das BB.Achilefu S.Alfano RR. Appl. Opt. 2008, 47: 2281 -
5d
Almutairi A.Guillaudeu SJ.Berezin MY.Achilefu S.Fréchet JMJ. J. Am. Chem. Soc. 2008, 130: 444 - 6
Pharm W.Cassell L.Gillman A.Koktysh D.Gore JC. Chem. Commun. 2008, 16: 1895 - 7
Pauli J.Vag T.Haag R.Spieles M.Wenzel M.Kaiser WA.Resch-Genger U.Hilger I. Eur. J. Med. Chem. 2009, 3496 - 8
Escobedo JO.Rusin O.Lim S.Strongin RM. Curr. Opin. Chem. Biol. 2010, 14: 64 -
9a
Samanta A.Vendrell M.Das R.Chang Y.-T. Chem. Commun. 2010, 46: 7406 -
9b
Samanta A.Vendrell M.Yun S.-W.Guan Z.Xu Q.-H.Chang Y.-T. Chem. Asian J. 2011, 6: 1353 -
9c
Samanta A.Maiti KK.Soh K.-S.Liao X.Vendrell M.Dinishi US.Yun S.-W.Bhuvaneswari R.Kim H.Rautela S.Chung J.Olivo M.Chang Y.-T. Angew. Chem. Int. Ed. 2011, 50: 6089 -
10a
Kosaka N.Mitsunaga M.Longmire MR.Choyke PL.Kobayashi H. Int. J. Cancer 2011, 129: 1671 -
10b
Baker KJ. Proc. Soc. Exp. Biol. Med. 1966, 122: 957 -
11a
Ernst LA.Gupta RK.Mujumdar RB.Waggoner AS. Cytometry 1989, 10: 3 -
11b
Mujumdar RB.Ernst LA.Mujumdar SR.Waggoner AS. Cytometry 1989, 10: 11 -
11c
Southwick PL.Ernst LA.Tauriello EW.Parker SR.Mujumdar RB.Mujumdar SR.Clever HA.Waggoner AS. Cytometry 1990, 11: 418 -
11d
Mujumdar RB.Ernst LA.Mujumdar SR.Lewis CJ.Waggoner AS. Bioconjugate Chem. 1993, 4: 105 - For reviews:
-
12a
Robinson B. Chem. Rev. 1963, 63: 373 -
12b
Robinson B. Chem. Rev. 1969, 69: 227 -
12c
Hughes DL. Org. Prep. Proced. Int. 1993, 25: 607 - 13
Borsche W. Ber. Dtsch. Chem. Ges. 1917, 50: 1339 - 14
Boyer JH.Buriks RS. Org. Synth., Collect. Vol. V 1973, 1067 - 15
Blanco L.Amice P.Conia JM. Synthesis 1976, 194 -
16a
RajanBabu TV.Fukunaga T. J. Org. Chem. 1984, 49: 4571 -
16b
RajanBabu TV.Reddy GS.Fukunaga T.
J. Am. Chem. Soc. 1985, 107: 5473 -
16c
RajanBabu TV.Chenard BL.Petti MA. J. Org. Chem. 1986, 51: 1704 - 18
Meisenheimer J. Liebigs Ann. Chem. 1902, 323: 205 - 19
Saeki S.Hayashi T.Hamana M. Heterocycles 1984, 22: 545 - 22
Demas JN.Crosby GA. J. Phys. Chem. 1971, 75: 991 - 23
Benson RC.Kues HA. J. Chem. Eng. Data 1977, 22: 379 - 24
Tornøe CW.Chirstensen C.Meldal M. J. Org. Chem. 2002, 67: 3057 - 25
Rostovtsev VV.Green LG.Fokin VV.Sharpless KB. Angew. Chem. Int. Ed. 2002, 41: 2596 - 26
Kunishima M.Kawachi C.Hioki K.Terao K.Tani S. Tetrahedron 2001, 57: 1551 - 27
Doi T.Numajiri Y.Takahashi T.Takagi M.Shin-ya K. Chem. Asian J. 2011, 6: 180 - 28
Park IS.Kwon MS.Kim Y.Lee JS.Park J. Org. Lett. 2008, 10: 497 - It has been demonstrated that fluorescence of a low quantum yield molecular fluorophore, such as ICG, is strongly enhanced by the plasmon resonance energy utilizing metalic nanoshells, see:
-
29a
Tam F.Goodrich GP.Johnson BR.Halas NJ. Nano Lett. 2007, 7: 496 -
29b
Bardhan R.Grady NK.Halas NJ. Small 2008, 4: 1716
References and Notes
RajanBabu et al. reported α-nitroarylation by aromatic nucleophilic substitution with silyl enol ethers was performed using TASF in THF-MeCN at rather lower temperatures such as -60 ˚C. See ref. 16.
20Synthesis of 5-amino-1-δ-sulfobutyl-2,3,3-trimethyl-(3H)-indolenine and its cyanine derivatives was reported in ref. 11b.
21Compound 3c was prepared from 1,1,2-trimethyl-(1H)-benz[e]indole and 1,4-butane sultone according to standard methods.