Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2012; 23(9): 1331-1334
DOI: 10.1055/s-0031-1290690
DOI: 10.1055/s-0031-1290690
letter
Synthesis of Carbamoylacetates from α-Iodoacetate, CO, and Amines under Pd/Light Combined Conditions
Further Information
Publication History
Received: 19 February 2012
Accepted after revision: 14 March 2012
Publication Date:
14 May 2012 (online)
Abstract
We developed a novel synthetic method of carbamoylacetates from α-iodoacetate, carbon monoxide, and amines under photoirradiation conditions in the presence of a Pd catalyst. This reaction likely proceeds via interplay of radical and organopalladium species.
-
References
- 1a Wood JL, Stoltz BM, Dietrich H.-J, Pflum DA, Petsch DT. J. Am. Chem. Soc. 1997; 119: 9641
- 1b Dragovich PS, Bertolini TM, Ayida BK, Li L.-S, Murphy DE, Ruebsam F, Sun Z, Zhou Y. Tetrahedron 2007; 63: 1154
- 1c Peukert S, Sun Y, Zhang R, Hurley B, Sabio M, Shen X, Gray C, Dzink-Fox J, Tao J, Cebula R, Wattanasin S. Bioorg. Med. Chem. Lett. 2008; 18: 1840
- 1d Chandra K, Dutta D, Mitra A, Das AK, Basak A. Bioorg. Med. Chem. 2011; 19: 3274
- 2 Boros EE, Edwards CE, Foster SA, Fuji M, Fujiwara T, Garvey EP, Golden PL, Hazen RJ, Jeffrey JL, Johns BA, Kawasuji T, Kiyama R, Koble CS, Kurose N, Miller WH, Mote AL, Murai H, Sato A, Thompson JB, Woodward MC, Yoshinaga T. J. Med. Chem. 2009; 52: 2754
- 3a Tuba R, Ungváry F. J. Mol. Catal. A: Chem. 2003; 203: 59
- 3b Zhang Z, Liu Y, Ling L, Li Y, Dong Y, Gong M, Zhao X, Zhang Y, Wang J. J. Am. Chem. Soc. 2011; 133: 4330
- 4a Shinoda K, Yasuda K. Chem. Lett. 1985; 1: 9
- 4b Shinoda K, Yasuda K. Bull. Chem. Soc. Jpn. 1992; 65: 289
- 4c Song WH, Jisng XZ. Chin. Chem. Lett. 2000; 12: 1035
- 5a Ryu I, Sonoda N. Angew. Chem., Int. Ed. Engl. 1996; 35: 1050
- 5b Ryu I, Sonoda N, Curran DP. Chem. Rev. 1996; 96: 177
- 5c Ryu I. Chem. Soc. Rev. 2001; 30: 16
- 5d Also see a review on acyl radicals: Chatgilialoglu C, Crich D, Komatsu M, Ryu I. Chem. Rev. 1999; 99: 1991
- 6a Ryu I, Nagahara K, Kambe N, Sonoda N, Kreimerman S, Komatsu M. Chem. Commun. 1998; 1953
- 6b Nagahara K, Ryu I, Komatsu M, Sonoda N. J. Am. Chem. Soc. 1997; 119: 5465
- 6c Kreimerman S, Ryu I, Minakata S, Komatsu M. Org. Lett. 2000; 2: 389
- 6d Also see a review: Ryu I. Chem. Soc. Rev. 2001; 30: 16
- 7a Ryu I, Kreimerman S, Araki F, Nishitani S, Oderaotoshi S, Minakata S, Komatsu M. J. Am. Chem. Soc. 2002; 124: 3812
- 7b Fukuyama T, Nishitani S, Inouye T, Morimoto K, Ryu I. Org. Lett. 2006; 8: 1383
- 7c Fukuyama T, Inouye T, Ryu I. J. Organomet. Chem. 2007; 692: 685
- 7d Fusano A, Fukuyama T, Nishitani S, Inouye T, Ryu I. Org. Lett. 2010; 12: 2410
- 7e Also see a review: Ryu I. Chem. Rec. 2002; 2: 249
- 8 Fusano A, Sumino S, Fukuyama T, Ryu I. Org. Lett. 2011; 13: 2114
- 9a Fors BP, Krattiger P, Strieter E, Buchwald SL. Org. Lett. 2008; 10: 3505
- 9b Grushin VV, Alper H. Organometallics 1993; 12: 1890
- 9c Amatore C, Jutand A. J. Organomet. Chem. 1999; 576: 254
- 10 General Procedure for the Synthesis of 3a A magnetic stirring bar, 1 (54.1 mg, 0.25 mmol), 2a (92.9 mg, 0.77 mmol), Et3N (29.9 mg, 0.30 mmol), PdCl2(PPh3)2 (8.4 mg, 0.012 mmol), DMAP (3.7 mg, 0.031 mmol), toluene (5.0 mL), and H2O (50 μL) were placed in a stainless steel autoclave for photoreaction equipped with an inserted Pyrex glass liner. The autoclave was closed, purged three times with 10 atm of CO, pressurized with 10 atm of CO, and then irradiated by two 15 W black lights with stirring for 8 h. Excess CO was discharged after the reaction. The reaction mixture was added to H2O (20 mL) and extracted with Et2O (3 × 20 mL). The combined ether layer was washed with brine, and dried over MgSO4, then filtered and concentrated in vacuo. The resulting residue was subjected to silica gel column chromatography using hexane–Et2O as eluent affording 3a (45.8 mg, 77%).1H NMR (400 MHz, CDCl3): δ = 7.45–7.35 (m, 3 H), 7.20 (d, J = 6.8 Hz, 2 H), 4.05 (q, J = 7.2 Hz, 2 H), 3.78 (q, J = 7.2 Hz, 2 H), 1.23 (t, J = 7.2 Hz, 3 H), 1.14 (t, J = 7.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 12.89, 14.06, 41.96, 44.25, 61.20, 128.38, 129.81, 141.77, 165.47, 167.83. IR (neat): 1740, 1667, 1404, 1368 cm–1. MS: m/z (%) = 235 (55) [M+], 190 (16), 148 (21), 121 (49), 120 (44), 105 (100), 104 (12), 77 (23). HRMS (EI): m/z calcd for C13H17NO3 [M]+: m/z = 235.1208; found: 235.1213
- 11a Ryu I, Yamazaki H, Ogawa A, Kambe N, Sonoda N. J. Am. Chem. Soc. 1993; 115: 1187
- 11b See also ref. 8
- 12a Ozawa F, Yamamoto A. Chem. Lett. 1982; 865
- 12b Urata H, Yoshimitsu I, Fuchigami T. Tetrahedron Lett. 1989; 30: 4407
- 12c Yamamoto A. Bull. Chem. Soc. Jpn. 1995; 68: 433
- 12d Lin Y.-S, Yamamoto A. Orgametallics 1998; 17: 3466
- 12e Yamamoto A. J. Chem. Soc., Dalton Trans. 1999; 1027
- 13a Kramer AV, Osborn JA. J. Am. Chem. Soc. 1974; 96: 7832
- 13b Kramer AV, Labinger JA, Bradley JS, Osborn JA. J. Am. Chem. Soc. 1974; 96: 7145
- 13c Knochel P, Manolikakes G. Angew. Chem. Int. Ed. 2009; 48: 205
- 13d See also ref. 7b
There are many reports concerning the synthesis of malonates. For selected papers, see:
For reviews on radical carbonylations, see:
For the atom-transfer carbonylation reactions, see:
For radical–metal hybrid reactions, see:
For water-promoted activation of Pd(II) to generate Pd(0), see:
For examples of an electron transfer from low-valent palladium or platinum complexes to iodoalkanes, see: