Synlett 2012; 23(8): 1213-1216
DOI: 10.1055/s-0031-1290803
letter
© Georg Thieme Verlag Stuttgart · New York

Stereoselective Total Syntheses of Insect Juvenile Hormones JH 0 and JH I

Atsushi Manabe
Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan, Fax: +81(6)66053153   Email: shinada@sci.osaka-cu.ac.jp   Email: ohfune@sci.osaka-cu.ac.jp
,
Yasufumi Ohfune*
Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan, Fax: +81(6)66053153   Email: shinada@sci.osaka-cu.ac.jp   Email: ohfune@sci.osaka-cu.ac.jp
,
Tetsuro Shinada*
Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan, Fax: +81(6)66053153   Email: shinada@sci.osaka-cu.ac.jp   Email: ohfune@sci.osaka-cu.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 08 December 2011

Accepted after revision: 27 February 2012

Publication Date:
20 April 2012 (online)


Abstract

Total syntheses of juvenile hormones JH 0 and JH I have been achieved by a new iterative enol tosylate homologation strategy.

Supporting Information

 
  • References and Notes

  • 2 Wigglesworth VB. Comprehensive Insect Physiology, Biochemistry and Pharmacology . Vol. 7. Kerkut GA, Gilbert LI. Pergamon Press; Oxford: 1985: 1-24
    • 4a Morgan ED, Wilson ID. Mori K. Comprehensive Natural Products Chemistry,. In Miscellaneous Natural Products Including Marine Natural Products, Pheromones, Plant Hormones, and Aspects of Ecology. Vol. 8. Barton DH. R, Nakanishi K. Pergamon Press; Oxford: 1999: 263-369
    • 4b Kotaki T, Shinada T, Kaihara K, Ohfune Y, Numata H. Org. Lett. 2009; 11: 5234
  • 6 Crispino GA, Sharpless KB. Synthesis 1993; 777
  • 9 (Z)-24 was transformed into the corresponding bromide A by a series of sequential transformations: i) the Negishi cross-coupling reaction of with Et2Zn in the presence of 10 mol% of Pd(PPh3)4, ii) reduction to the corresponding allylic alcohol, and iii) bromination to the allyl borimide A. However, it was found to be volatile and easily evaporated under the reduced pressure to lower the product yield (ca. 30%)
  • 11 Babinski D, Soltani O, Frantz DE. Org. Lett. 2008; 10: 2901
  • 12 The olefin geometry was confirmed by NOE experiments of the synthetic JH 0 and JH I (see Supporting Information)
  • 14 The optical purity was confirmed by the total synthesis of JH 0 and JH I, and comparison of the optical rotations of the synthetic natural products with those of authentic data shown in below
  • 15 Analytical Data of JH 0 (1): [α]D 18 +13.4 (c 0.8, MeOH) [lit. 5d [α]D + 13.8 (c 0.92, MeOH)]. 1H NMR (400 MHz, CDCl3): δ = 5.61 (s, 1 H), 5.10 (br, 1 H), 3.68 (s, 3 H), 2.71 (dd, J = 6.6, 5.6 Hz, 1 H), 2.18–2.03 (m, 10 H), 1.63–1.48 (m, 4 H), 1.27 (s, 3 H), 1.07 (t, J = 7.6 Hz, 3 H), 1.00 (t, J = 7.6 Hz, 3 H), 0.96 (t, J = 7.6 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 166.8, 165.7, 141.2, 123.1, 114.5, 64.6, 61.8, 50.7, 38.1, 33.3, 27.2, 25.8, 25.7, 25.3, 23.2, 21.6, 13.1, 12.9, 9.6. IR (neat): 2970, 2353, 1720, 1644, 1461, 1209, 1149, 761 cm–1. HRMS–FAB: m/z calcd for C19H33O3 [M + H]+: 309.2430; found: 309.2421
  • 16 Analytical Data of JH I (2): [α]D 18 +14.4 (c 0.98, MeOH) [lit.5a,e [α]D 22.5 +14.5 (c 0.78, MeOH)]. 1H NMR (400 MHz, CDCl3): δ = 5.66 (d, J = 0.6 Hz 1 H), 5.08 (t, J = 6.3 Hz, 1 H), 3.68 (s, 3 H), 2.71 (dd, J = 7.2, 6.0 Hz, 1 H), 2.18–2.03 (m, 8 H), 2.16 (d, J = 0.6 Hz, 3 H), 1.63–1.48 (m, 4 H), 1.27 (s, 3 H), 0.99 (t, J = 7.2 Hz 3 H), 0.97 (t, J = 7.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 167.2, 159.9, 141.3, 122.9, 115.3, 64.6, 61.8, 50.8, 41.1, 33.3, 27.2, 25.8, 25.6, 23.1, 21.6, 18.8, 13.1, 9.7. IR (neat): 2968, 2360, 1720, 1650, 1457, 1125, 1149, 770 cm–1. HRMS–FAB: m/z calcd for C18H31O3 [M + H]+: 295.2273; found: 295.2270