Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2012; 23(9): 1364-1370
DOI: 10.1055/s-0031-1290962
DOI: 10.1055/s-0031-1290962
letter
Quinazolinone-Directed C–H Activation: A Novel Strategy for the Acetoxylation–Methoxylation of the Arenes
Further Information
Publication History
Received: 29 February 2012
Accepted after revision: 15 March 2012
Publication Date:
14 May 2012 (online)
Abstract
2-Aryl-4-quinazolinones undergo smooth acetoxylation in the presence of 5 mol% Pd(OAc)2 and a stoichiometric amount of PhI(OAc)2 via C–H activation to produce the corresponding acetoxy-substituted 4(3H)-quinazolinone derivatives in good yields with high regioselectivity.
-
References and Notes
- 1a Wolfe JF, Rathman TL, Sleevi MC, Campbell JA, Greenwood TD. J. Med. Chem. 1990; 33: 161
- 1b Padia JK, Field M, Hinton J, Meecham K, Pablo J, Pinnock R, Roth BD, Singh L, Suman-Chauhan N, Trivedi BK, Webdale L. J. Med. Chem. 1998; 41: 1042
- 2 Xia Y, Yang ZY, Hour MJ, Kuo SC, Xia P, Bastow KF, Nakanishi Y, Nampoothiri P, Hackl T, Hamel E, Lee KH. Bioorg. Med. Chem. Lett. 2001; 11: 1193
- 3 Kenichi O, Yoshihisa Y, Toyonari O, Toru I, Yoshio I. J. Med. Chem. 1985; 28: 568
- 4a Buchanan JG, Sable HZ In Selective Organic Transformations . Vol. 2. Thyagarajan BS. Wiley; New York: 1972: 1-95
- 4b Khalil MA, Habib NS. Farmaco, Ed. Sci. 1987; 42: 973
- 4c Habib OM, Girges MM, Moawad EB, el-Shafei AM. Boll. Chim. Farm. 1995; 134: 209
- 5 Maarouf AR, El-Bendary ER, Goda FE. Arch. Pharm. 2004; 337: 527
- 6a Corbett JW, Ko SS, Rodgers JD, Gearhart LA, Magnus NA, Bacheler LT, Diamond S, Jeffrey S, Klabe RM, Cordova C, Garber S, Logue K, Trainor GL, Anderson PS, Erickson-Vitanen SK. J. Med. Chem. 2000; 43: 2019
- 6b Rudolph J, Esler WP, O’Connor S, Coish PD. G, Wickens PL, Brands M, Bierer DE, Bloomquist BT, Bondar G, Chen L, Chuang CY, Claus TH, Fathi Z, Fu W, Khire UR, Kristie JA, Liu XG, Lowe DB, McClure AC, Michels M, Ortiz AA, Ramsden PD, Schoenleber RW, Shelekhin TE, Vakalopoulos A, Tang W, Wang L, Yi L, Gardell SJ, Livingston JN, Sweet LJ, Bullock WH. J. Med. Chem. 2007; 50: 5202
- 6c Napier SE, Letourneau JJ, Ansari N, Auld DS, Baker J, Best S, Campbell-Wan L, Chan R, Craighead M, Desai H, Ho KK, MacSweeney C, Milne R, Morphy JR, Neagu I, Ohlmeyer MH. J, Pick J, Presland J, Riviello C, Zanetakos HA, Zhao J, Webb ML. Bioorg. Med. Chem. Lett. 2011; 21: 3813
- 7a Beccalli EM, Broggini G, Martinelli M, Sottocornola S. Chem. Rev. 2007; 107: 5318
- 7b Alberico D, Scott ME, Lautens M. Chem. Rev. 2007; 107: 174
- 7c Giri R, Maugel NL, Li JJ, Wang DH, Breazzano SP, Saunders LB, Yu JQ. J. Am. Chem. Soc. 2007; 129: 3510
- 7d Cai G, Fu Y, Li Y, Wan X, Shi Z. J. Am. Chem. Soc. 2007; 129: 7666
- 7e Shi ZJ, Li B, Wan X, Cheng J, Fang Z, Cao B, Qin C, Wang Y. Angew. Chem. Int. Ed. 2007; 46: 5554
- 7f Yu W.-Y, Sit WN, Lai K.-M, Zhou Z, Chan AS. C. J. Am. Chem. Soc. 2008; 130: 3304
- 7g Hull KL, Sanford MS. J. Am. Chem. Soc. 2007; 129: 11904
- 7h Yu JQ, Giri R, Chen X. Org. Biomol. Chem. 2006; 4: 4041
- 8a Chen X, Li JJ, Hao XS, Goodhue CE, Yu JQ. J. Am. Chem. Soc. 2006; 128: 78
- 8b Chen X, Goodhue CE, Yu JQ. J. Am. Chem. Soc. 2006; 128: 12634
- 8c Zaitsev VG, Shabashov D, Daugulis O. J. Am. Chem. Soc. 2005; 127: 13154
- 8d Daugulis O, Zaitsev VG. Angew. Chem. Int. Ed. 2005; 44: 4046
- 8e Orito K, Horibata A, Nakamura T, Ushito H, Nagasaki H, Yuguchi M, Yamashita S, Tokuda M. J. Am. Chem. Soc. 2004; 126: 14342
- 8f Wakui H, Kawasaki S, Satoh T, Miura M, Nomura M. J. Am. Chem. Soc. 2004; 126: 8658
- 9a Desai LV, Ren DT, Rosner T. Org. Lett. 2010; 12: 1032
- 9b Chernyak N, Dudnik AS, Huang C, Gevorgyan V. J. Am. Chem. Soc. 2010; 132: 8270
- 9c Yoshikai N, Matsumoto A, Norinder J, Nakamura E. Angew. Chem. Int. Ed. 2009; 48: 2925
- 9d Zhao X, Yeung CS, Dong VM. J. Am. Chem. Soc. 2010; 132: 5837
- 9e Gu S, Chen C, Chen W. J. Org. Chem. 2009; 74: 7203
- 9f Thu HY, Yu WY, Che CM. J. Am. Chem. Soc. 2006; 128: 9048
- 9g Wan X, Ma Z, Li B, Zhang K, Cao S, Zhang S, Shi Z. J. Am. Chem. Soc. 2006; 128: 7416
- 9h Tsang WC. P, Zheng N, Buchwald SL. J. Am. Chem. Soc. 2005; 127: 14560
- 9i Giri R, Liang J, Lei JG, Li JJ, Wang DH, Chen X, Naggar IC, Guo C, Foxman BM, Yu JQ. Angew. Chem. Int. Ed. 2005; 44: 7420
- 10a Wasa M, Worrell BT, Yu J.-Q. Angew. Chem. Int. Ed. 2010; 49: 1275
- 10b Chernyak N, Dudnik AS, Huang C, Gevorgyan V. J. Am. Chem. Soc. 2010; 132: 8270
- 11a Desai LV, Ren DT, Rosner T. Org. Lett. 2010; 12: 1032
- 11b Dick AR, Hull KL, Sanford MS. J. Am. Chem. Soc. 2004; 126: 2300
- 11c Wang G.-W, Yuan T.-T, Wu X.-L. J. Org. Chem. 2008; 73: 4717
- 11d Wang G.-W, Yuan T.-T. J. Org. Chem. 2010; 75: 476
- 11e Stowers KJ, Sanford MS. Org. Lett. 2009; 11: 4584
- 11f Desai LV, Malik HA, Sanford MS. Org. Lett. 2006; 8: 1141
- 11g Kalyani D, Sanford MS. Org. Lett. 2005; 7: 4149
- 12a Reddy BV. S, Reddy LR, Corey EJ. Org. Lett. 2006; 8: 3391
- 12b Reddy BV. S, Ramesh K, Yadav JS. Synlett 2011; 169
- 12c Reddy BV. S, Revathi G, Reddy AS, Yadav JS. Synlett 2011; 2374
- 13 Abdel-Jalil RJ, Voelter W, Saeed M. Tetrahedron Lett. 2004; 45: 3475
- 14 Preparation of 2-Aryl-4(3H)-quinazolinone (1) To a mixture of anthranilimide (544 mg, 4.0 mmol) and benzaldehyde (470 mg, 4.4 mmol) in EtOH (20 mL) was added CuCl2 (804 mg, 6 mmol) at 25 °C. The resulting mixture was stirred under reflux for 3 h as required to complete the reaction. After complete conversion, as indicated by TLC, the solvent was removed in vacuo, and the mixture was diluted with H2O and extracted with EtOAc (3 × 15 mL). The combined organic layers were dried over anhyd Na2SO4, concentrated in vacuo, and purified by column chromatography on silica gel (Merck, 60–120 mesh, EtOAc–hexane = 4:6) to afford the pure quinazolinone (1, Scheme 5)
- 15 Typical Procedures (i) Monoacetoxylation A mixture of 2-aryl-4(3H)-quinazolinone (1 mmol), iodobenzenediacetate (1.1 mmol), Ac2O (1.1 mmol), and Pd(OAc)2 (5 mol%) in DCE (5 mL) was stirred under reflux for a specified time (Table 1). After complete conversion, as indicated by TLC, the reaction mixture was diluted with H2O (10 mL) and extracted with CH2Cl2 (3 × 10 mL). The combined organic layers were dried over anhyd Na2SO4, concentrated in vacuo, and purified by column chroma-tography on silica gel (Merck, 60–20 mesh, EtOAc–hexane = 4:6) to afford pure monoacetoxy quinazolinone derivative. (ii) Bisacetoxylation A mixture of 2-aryl-4(3H)-quinazolinone (1 mmol), iodobenzenediacetate (2.2 mmol), Ac2O (2.2 mmol), and Pd(OAc)2 (5 mol%) in DCE (5 mL) was stirred at reflux temperature for a specified time (Table 2). After complete conversion, as indicated by TLC, the reaction mixture was diluted with H2O (10 mL) and extracted with CH2Cl2 (3 × 10 mL). The combined organic layers were dried over anhyd Na2SO4, concentrated in vacuo, and purified by column chromatography on silica gel (Merck, 60–20 mesh, EtOAc–hexane = 4:6) to afford pure bisacetoxy quinazolinone derivative. The products thus obtained were characterized by IR, NMR, and MS and also by physical constants. Compound 3a (Table 1): solid, mp 188–190 °C. IR (neat): νmax = 3081, 2926, 1675, 1598, 1546, 1496, 1446, 1336, 1220, 1173, 1063, 939, 826, 767 cm–1. 1H NMR (500 MHz, CDCl3): δ = 2.33 (s, 3 H), 7.26 (d, 1 H, J = 7.6 Hz), 7.42 (t, 1 H, J = 7.6 Hz), 7.49 (t, 1 H, J = 6.6 Hz), 7.55 (t, 1 H, J = 6.6 Hz), 7.73–7.82 (m, 2 H), 8.08 (d, 1 H, J = 7.6 Hz), 8.26 (d, 1 H, J = 7.6 Hz), 10.54–10.65 (br s, 1 H). ESI-MS: m/z = 281 [M + H], 303 [M + Na]. Compound 3b (Table 1): solid, mp 198–200 °C. IR (neat): νmax = 3446, 2923, 2853, 1773, 1743, 1671, 1605, 1462, 1371, 1258, 1191, 1077, 1021, 965, 773 cm–1. 1H NMR (300 MHz, CDCl3): δ = 2.08 (s, 3 H), 2.33 (s, 3 H), 7.07 (s, 1 H), 7.20–7.28 (m, 1 H), 7.44–7.57 (m, 1 H), 7.75–7.83 (m, 2 H), 7.91 (d, 1 H, J = 7.9 Hz), 8.28 (d, 1 H, J = 8.3Hz). 13C NMR (75 MHz, CDCl3): δ = 21.1, 21.4, 114.2, 122.5, 124.2, 126.4, 126.9, 127.4, 127.8, 128.1, 130.1, 134.8, 143.3, 148.3, 149.7, 162.9, 168.9. ESI-MS: m/z = 295 [M + H], 317 [M + Na]. Compound 3c (Table 1): solid, mp 159–160 °C. IR (neat): νmax = 3353, 3222, 2923, 2854, 1689, 1592, 1478, 1396, 1211, 1164, 1052, 936, 759, 682 cm–1. 1H NMR (300 MHz, CDCl3): δ = 2.06 (s, 3 H), 7.36–7.60 (m, 3 H), 7.62–7.81 (m, 3 H), 8.23 (d, 1 H, J = 7.9 Hz). ESI-MS: m/z = 359 [M + H], 381 [M + Na]. Compound 3d (Table 1): solid, mp 272–274 °C. IR (KBr): νmax = 2923, 2853, 1782, 1687, 1609, 1467, 1348, 1296, 1178, 1053, 941, 889, 771 cm–1. 1H NMR (500 MHz, CDCl3): δ = 2.58 (s, 3 H), 7.48–7.58 (m, 2 H), 7.77–7.85 (m, 2 H), 8.23–8.31 (m, 2 H), 8.34 (d, 1 H, J = 8.9 Hz), 8.50 (d, 1 H, J = 7.9 Hz). ESI-MS: m/z = 326 [M + H], 348 [M + Na]. HRMS: m/z calcd for C16H12N3O5: 326.0771; found: 326.0784. Compound 3e (Table 1): solid, mp 118–119 °C. IR (KBr): νmax = 3424, 3137, 3063, 2928, 2856, 1760, 1671, 1574, 1508, 1471, 1364, 1256, 1199, 992, 926, 838, 777 cm–1. 1H NMR (300 MHz, CDCl3): δ = 0.26 (s, 6 H), 1.02 (s, 9 H), 2.30 (s, 3 H), 6.97 (d, 1 H, J = 8.9 Hz), 7.09 (d, 1 H, J = 8.9 Hz), 7.43–7.56 (m, 2 H), 7.72–7.83 (m, 2 H), 8.27 (d, 1 H, J = 6.9 Hz), 10.53 (br s, 1 H). 13C NMR (75 MHz, CDCl3): δ = –4.4, 18.1, 21.0, 25.5, 121.2, 120.9, 123.3, 124.5, 126.5, 127, 127.8, 134.7, 142.3, 149, 149.6, 153.7, 162.6, 169.2. ESI-MS: m/z = 411 [M + H], 433 [M + Na]. HRMS: m/z calcd for C22H27N2O4Si: 411.1740; found: 411.1722. Compound 3f (Table 1): solid, mp 256–258 °C. IR (KBr): νmax = 2924, 2855, 1766, 1670, 1602, 1467, 1369, 1302, 1190, 1070, 1012, 902, 746 cm–1. 1H NMR (300 MHz, CDCl3): δ = 2.31 (s, 3 H), 7.03–7.21 (m, 3 H), 7.28–7.60 (m, 5 H), 7.67–7.73 (m, 2 H), 7.81–7.86 (m, 1 H), 8.15 (d, 1 H, J = 7.5 Hz), 10.79–10.93 (br s, 1 H). 13C NMR (75 MHz, CDCl3): δ = 21, 96.1, 111.8, 114.2, 119, 120.3, 122, 122.9, 123.8, 124.9, 126.5, 127.1, 127.8, 128.2, 129.9, 134.7, 143.8, 148.9, 155.1, 156.6, 162.9, 168.8; ESI-MS: m/z = 373 [M + H], 395 [M + Na]. HRMS: m/z calcd for C22H17N2O4: 373.1183; found: 373.1198. Compound 3g (Table 1): solid, mp 176–178 °C. IR (neat): νmax = 3445, 2925, 2854, 1770, 1744, 1677, 1597, 1467, 1422, 1363, 1255, 1196, 1125, 1037, 894, 829, 774, 698 cm–1. 1H NMR (300 MHz, CDCl3): δ = 2.08 (s, 3 H), 2.45 (s, 3 H), 3.44 (s, 3 H), 7.12 (s, 1 H), 7.20 (d, 1 H, J = 7.5 Hz), 7.37 (d, 1 H, J = 8.3 Hz), 7.44–7.57 (m, 2 H), 7.72–7.79 (m, 1 H), 8.34 (d, 1 H, J = 7.5 Hz). 13C NMR (75 MHz, CDCl3): δ = 21.4, 24.8, 33.3, 114.2, 123.6, 126.6, 127, 127.1, 127.5, 129, 129.6, 131.9, 134.2, 141.9, 144.1, 147.6, 162.5, 168.7. ESI-MS: m/z = 309 [M + H], 331 [M + Na]. Compound 3h (Table 1): solid, mp 156–58 °C. IR (neat): νmax = 3425, 3316, 2923, 2853, 1681, 1590, 1555, 1463, 1317, 1253, 1168, 1026, 951, 745 cm–1. 1H NMR (300 MHz, CDCl3): δ = 2.43 (s, 3 H), 4.07 (s, 3 H), 6.82 (s, 1 H), 6.94 (d, 1 H, J = 8.1 Hz), 7.37–7.47 (m, 1 H), 7.67–7.79 (m, 2 H), 8.24 (d, 1 H, J = 7.9 Hz), 8.44 (d, 1 H, J = 7.9 Hz), 10.81–11.00 (br s, 1 H). 13C NMR (75 MHz, CDCl3): δ = 21.7, 55.9, 102.4, 112.3, 122.5, 126, 126.2, 127.5, 131.2, 134.2, 134.4, 144.1, 149.3, 150.7, 157.5, 161.8. ESI-MS: m/z = 267 [M + H], 289 [M + Na]. HRMS: m/z calcd for C16H15N2O2: 267.1128; found: 267.1160. Compound 4a (Table 2): solid, mp 183–184 °C. IR (KBr): νmax = 3429, 3187, 3074, 2923, 2854, 1770, 1657, 1606, 1463, 1364, 1281, 1189, 1032, 937, 854, 781 cm–1. 1H NMR (300 MHz, CDCl3): δ = 2.15 (s, 6 H), 7.20 (d, 2 H, J = 8.1 Hz), 7.49–7.60 (m, 2 H), 7.80 (d, 2 H, J = 3.6 Hz), 8.30 (d, 1 H, J = 7.7 Hz). 13C NMR (75 MHz, CDCl3): δ = 20.7, 120.6, 120.9, 126.5, 127.5, 131.5, 134.8, 146.7, 148.4, 149.1, 161.9, 168.6. ESI-MS: m/z = 339 [M + H], 361 [M + Na]. HRMS: m/z cald for C18H14N2O5Na: 361.0800; found: 361.0788. Compound 4b (Table 2): solid, mp 323–325 °C. IR (KBr): νmax = 3178, 3068, 2923, 2855, 1779, 1660, 1620, 1467, 1366, 1283, 1190, 1057, 936, 878, 776 cm–1. 1H NMR (300 MHz, CDCl3): δ = 2.16 (s, 6 H), 2.46 (s, 3 H), 6.96 (s, 2 H), 7.46–7.56 (m, 1 H), 7.64–7.83 (m, 2 H), 8.28 (d, 2 H, J = 8.3 Hz), 9.58 (br s, 1 H). 13C NMR (75 MHz, CDCl3): δ = 20.7, 29.6, 121.6, 126.6, 127.4, 127.7, 134.8, 142.9, 146.7, 148.7, 148.9, 161.6, 168.9. ESI-MS: m/z = 353 [M + H], 375 [M + Na]. Compound 4c (Table 2): solid, mp 197–199 °C. IR (KBr): νmax = 3182, 3071, 2923, 2853, 1784, 1762, 1656, 1600, 1468, 1364, 1272, 1180, 1145, 1048, 938, 875, 780, 690 cm–1. 1H NMR (300 MHz, CDCl3): δ = 2.13 (s, 6 H), 7.29 (s, 2 H), 7.43–7.56 (m, 2 H), 7.65–7.81 (m, 2 H), 8.26 (d, 1 H, J = 7.7 Hz). ESI-MS: m/z = 373 [M + H]. HRMS: m/z calcd for C18H13N2O5NaCl: 395.0410; found: 395.0395. Compound 4d (Table 2): solid, mp 178–180 °C. IR (neat): νmax = 2923, 2853, 1785, 1664, 1603, 1466, 1369, 1296, 1181, 1047, 833, 774 cm–1. 1H NMR (300 MHz, CDCl3): δ = 2.17 (s, 6 H), 3.86 (s, 3 H), 6.71 (s, 2 H), 7.48–7.57 (m, 1 H), 7.78 (d, 2 H, J = 3.6 Hz), 8.29 (d, 1 H, J = 7.9 Hz). 13C NMR (75 MHz, CDCl3): δ = 20.8, 55.9, 107.1, 126.6, 127.4, 134.9, 138.4, 139.2, 146.8, 150.2, 161.6, 163.9, 168.7. ESI-MS: m/z = 369 [M + H]. HRMS: m/z calcd for C19H17N2O6: 369.1081; found: 369.1083. Compound 4e (Table 2): solid, mp 165–166 °C. IR (KBr): νmax = 3331, 2924, 2855, 1761, 1681, 1602, 1465, 1368, 1310, 1190, 1081, 971, 937, 887, 771 cm–1. 1H NMR (300 MHz, CDCl3): δ = 2.14 (s, 6 H), 2.18 (s, 6 H), 7.23 (s, 1 H), 7.44–7.56 (m, 1 H), 7.68–7.80 (m, 2 H), 8.28 (d, 1 H, J = 7.9 Hz), 9.43 (br s, 1 H). 13C NMR (75 MHz, CDCl3): δ = 15.8, 20.2, 121.1, 121.3, 126.4, 127.2, 127.7, 129.3, 134.6, 145.3, 147.1, 148.6, 161.3, 168.7. ESI-MS: m/z = 367 [M + H], 389 [M + Na]. Compound 4f (Table 2): solid, mp 199–201 °C. IR (KBr): νmax = 3452, 3159, 2923, 2855, 1659, 1596, 1467, 1295, 1250, 1111, 1022, 939, 893, 757 cm–1. 1H NMR (300 MHz, CDCl3): δ = 3.76 (s, 6 H), 6.60 (d, 2 H, J = 8.3 Hz), 7.36 (t, 1 H, J = 8.3 Hz), 7.46 (t, 1 H, J = 7.3 Hz), 7.76 (d, 2 H, J = 6.4 Hz), 8.15–8.30 (m, 1 H), 10.21 (br s, 1 H). 13C NMR (75 MHz, CDCl3): δ = 29.6, 55.9, 104.0, 112.3, 126.3, 126.7, 127.8, 132.0, 134.4, 149.1, 149.4, 158.4, 162.7. ESI-MS: m/z = 283 [M + H]. HRMS: m/z calcd for C16H15N2O3: 283.1082; found: 283.1075
- 16 Reductive Cleavage of 2-Aryl-4(3H)-quinazolinone A solution of 3a (400 mg, 1.43 mmol) in anhyd THF (8 mL) and liquid NH3 (20 mL) was treated with lithium metal (60 mg, 8.5 mmol) at –78 °C (Scheme 6). After stirring for 20 min, the mixture was quenched with solid NH4Cl (1.5 g). The color of the mixture was turned from blue to colorless. Excess NH3 was allowed to evaporate, and the residual mixture was quenched with H2O (5 mL) and Et2O (5 mL). The organic layers were separated, and the aqueous layer was extracted with Et2O (3 × 5 mL). The combined organic layers were dried over anhyd Na2SO4 and concentrated under reduced pressure. The resulting crude product was purified by column chromatography on silica gel to give ortho-hydroxybenzamide as yellow color oil. Rf = 0.5 (SiO2, 30% EtOAc in hexane)