RSS-Feed abonnieren
DOI: 10.1055/s-0031-1291357
The Role of Ret Genomic Variants in Infantile Hypertrophic Pyloric Stenosis
Publikationsverlauf
received 13. Mai 2011
accepted after revision 21. September 2011
Publikationsdatum:
14. Dezember 2011 (online)
Abstract
Infantile hypertrophic pyloric stenosis (IHPS) is a common childhood pathology affecting approximately 1–5 children pro 1 000 newborns, with a genetic background as suggested by the familial occurrence. RET is a candidate gene for IHPS due to its role in the development of the intrinsic innervation and ganglia of the smooth musculature and the association of RET variants with another motility disorder (Hirschsprung’s disease). Accordingly, we investigated RET-IHPS associations through sequencing of the complete RET coding region in 32 IHPS patients. Genotype frequencies were compared between patients and 48 controls using the Cochran-Armitage trend test or Fischer’s test for exact p-values. We found 19 RET variants in IHPS, including polymorphisms in the promoter region (c.-200 G>A and c.-196C>A). There was no statistically significant difference between the frequencies of the variants in both groups. There was no deviation from the Hardy-Weinberg equilibrium, yet a significant correlation (linkage disequilibrium) for variants in the promoter region, in exons 11, 13, 14 and 19 and in the 3’ UTR. We conclude that RET variants are present in IHPS patients yet show no significant statistical association with the IHPS phenotype, suggesting at best an adjuvant role for RET in IHPS.
-
References
- 1 Abel RM, Bishop AE, Dore CJ et al. A quantitative study of the morphological and histochemical changes within the nerves and muscle in infantile hypertrophic pyloric stenosis. J Ped Surg 1998; 33 (05) 682-687
- 2 Chung E, Curtis D, Chen G et al. Genetic evidence for the neuronal nitric oxide synthase gene (NOS1) as a susceptibility locus for infantile pyloric stenosis. Am J Hum Genet 1996; 58: 363-370
- 3 Mitchel LE, Risch N. The genetics of infantile hypertrophic pyloric stenosis: a reanalysis. Am J Dis Chil 1993; 147: 1203-1211
- 4 Serra A, Schuchardt K, Genuneit J et al. Genomic variants in the coding region of NOS1 in infantile hypertrophic pyloric stenosis. J Pediatr Surg 2011; 46: 1903-1908
- 5 Vanderwinden JM, Mailleux P, Schiffmann SN et al. Nitric oxide synthase activity in infantile hypertrophic pyloric stenosis. New Engl J Med 1992; 327: 511-515
- 6 Huang PL, Dawson TM, Bredt DS et al. Targeted disruption of the neuronal nitric oxide synthase gene. Cell 1993; 75: 1273-1286
- 7 Saur D, Vanderwinden JM, Seidler B et al. Single-nucleotide promoter polymorphism alters transcription of neuronal nitric oxide synthase exon 1c in infantile hypertrophic pyloric stenosis. Proc Nat Acad Sci 2004; 101: 1662-1667
- 8 Soderhall C, Nordenskjold A. Neuronal nitric oxide synthase, nNOS, is not linked to infantile hypertrophic pyloric stenosis in 3 families. [Letter] Clin Genet 1998; 53: 421-422
- 9 Lagerstedt-Robinson K, Svenningsson A, Nordenskjöld A. No association between a promoter NOS1 polymorphism (rs41279104) and infantile hypertrophic pyloric stenosis. J Hum Genet 2009; 54 (12) 706-708
- 10 Amiel J, Attié T, Jan D et al. Heterozygous endothelin-B receptor (EDNRB) mutations in isolated Hirschsprung disease. Hum Mol Genet 1996; 5: 355-357
- 11 Edery P, Lyonnet S, Mulligan LM et al. Mutations of the RET proto-oncogene in Hirschsprung’s disease. Nature 1994; 367 (6461) 319-320
- 12 Fitze G, Cramer J, Ziegler A et al. Association between c135G/A genotype and RET proto-oncogene germline mutations and phenotype of Hirschsprung’s disease. Lancet 2002; 359 (9313) 1200-1205
- 13 Garcia-Barcelo M, Ganster RW, Lui VC et al. TTF-1 and RET promoter SNPs: regulation of RET transcription in Hirschsprung’s disease. Hum Mol Genet 2005; 14 (02) 191-204
- 14 de Pontual L, Pelet A, Trochet D et al. Mutations of the RET gene in isolated and syndromic Hirschsprung’s disease in human disclose major and modifier alleles at a single locus. J Med Genet 2006; 43: 419-423
- 15 Guarino N, Shima H, Oue T et al. Glial-derived growth factor signaling pathway in infantile hypertrophic pyloric stenosis. J Pediatr Surg 2001; 36 (09) 1468-1469
- 16 Guo SW, Thompson EA. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 1992; 48: 361-372
- 17 Mehta CR, Patel NR. A network algorithm for performing Fisher’s exact test in contingency tables. Journal of the American Statistical Association 1983; 78: 427-434
- 18 Abel RM, Bishop AE, Dore CJ et al. A quantitative study of the morphological and histochemical changes within the nerves and muscle in infantile hypertrophic pyloric stenosis. J Ped Surg 1998; 33 (05) 682-687
- 19 Sy ED, Shan YS, Lin CH et al. Immature intrinsic nerve innervations of pyloric muscle in idiopathic hypertrophic pyloric stenosis. J Formos Med Assoc 2004; 103 (07) 558-561
- 20 Guarino N, Shima H, Oue T et al. Glial-derived growth factor signalling pathway in infantile hypertrophic pyloric stenosis. J Ped Surg 2000; 35 (06) 835-839
- 21 Martucciello G, Thompson H, Mazzola C et al. GDNF deficit in Hirschsprung’s disease. J Pediat Surg 1998; 33 (01) 99-102
- 22 Romeo G, Ronchetto P, Luo Y et al. Point mutations affecting the tyrosine kinase domain of the RET proto-oncogene in Hirschsprung’s disease. Nature 1994; 367 (6461) 377-378
- 23 Lyonnet S, Bolino A, Pelet A et al. A gene for Hirschsprung disease maps to the proximal long arm of chromosome 10. Nat Genet 1993; 4 (04) 346-350
- 24 Fitze G, Appelt H, König IR et al. Functional haplotypes of the RET proto-oncogene promoter are associated with Hirschsprung disease (HSCR). Hum Mol Genet 2003; 12 (24) 3207-3214
- 25 Basel-Vanagaite L, Pelet A, Steiner Z et al. Allele dosage-dependent penetrance of RET proto-oncogene in an Israeli-Arab inbred family segregating Hirschsprung disease. Eur J Hum Genet 2007; 15: 242-245
- 26 Chung E, Coffey R, Parker K et al. Linkage analysis of infantile pyloric stenosis and markers from chromosome 9q11-q33: no evidence for a major gene in this candidate region. J Med Genet 1993; 30: 393-395
- 27 Chung E, Curtis D, Chen G et al. Genetic evidence for the neuronal nitric oxide synthase gene (NOS1) as susceptibility locus for infantile pyloric stenosis. Am J Hum Genet 1996; 58: 363-370
- 28 Abel RM, Bishop AE, Moscoso G et al. The ontogeny of innervation of the human pylorus. J Pediatr Surg 1998; 33 (04) 613-618
- 29 Takahashi T. Pathophysiological significance of neuronal nitric oxide synthase in the gastrointestinal tract [review]. J Gastroenterol 2003; 38: 421-430
- 30 Kusafuka T, Puri P. Altered messenger RNA expression of the neuronal nitric oxide synthase gene in infantile hypertrophic pyloric stenosis. Pediatr Surg Int 1997; 12: 576-579
- 31 Miao X, Garcia-Barceló MM, So MT et al. Lack of association between nNOS -84G>A polymorphism and risk of infantile hypertrophic pyloric stenosis in a Chinese population. J Pediatr Surg 2010; 45 (04) 709-713
- 32 Page AJ, O’Donnell TA, Cooper NJ et al. Nitric oxide as an endogenous peripheral modulator of visceral sensory neuronal function. J Neurosci 2009; 29 (22) 7246-7255
- 33 Sivarao DV, Mashimo H, Goyal RK. Pyloric sphincter dysfunction in nNOS -/- and W/Wv mutant mice: animal models of gastroparesis and duodeno-gastric reflux. Gastroenterology 2008; 135 (04) 1258-1266
- 34 Everett KV, Chioza BA, Georgula C et al. Genome-wide high-density SNP-based linkage analysis of infantile hypertrophic pyloric stenosis identifies loci on chromosomes 11q14-q22 and Xq23. Am J Hum Genet 2008; 82: 756-762