Dtsch Med Wochenschr 2011; 136(42): 2133-2139
DOI: 10.1055/s-0031-1292023
Originalarbeit | Original article
Prävention, Sportmedizin
© Georg Thieme Verlag KG Stuttgart · New York

Effekte unterschiedlicher Ganzkörpervibrationssysteme auf die neuromuskuläre Leistungsfähigkeit und die Körperzusammensetzung postmenopausaler Frauen

Ergebnisse der kontrollierten randomisierten ELVIS-II-StudieEffects of two different types of whole body vibration on neuromuscular performance and body composition in postmenopausal womenResults of the controlled and randomized ELVIS-II-studyA. Klarner2 , S.  v. Stengel1 , W. Kemmler1 , B. Kladny2 , W. Kalender1
  • 1Institut für Medizinische Physik (Direktor: Prof. Dr. W. Kalender), Friedrich-Alexander Universität Erlangen-Nürnberg
  • 2Fachklinik Herzogenaurach
Weitere Informationen

Publikationsverlauf

eingereicht: 22.12.2010

akzeptiert: 25.5.2011

Publikationsdatum:
11. Oktober 2011 (online)

Zusammenfassung

Fragestellung: Untersucht wurden die Effekte von Ganzkörpervibrationstraining (GKV) mit unterschiedlichen Systemen auf die neuromuskuläre Leistungsfähigkeit und Körperzusammensetzung postmenopausaler Frauen.

Methodik: 108 Frauen zwischen dem 60. und 75. Lebensjahr (65,8 ± 3,5 Jahre) wurden in der „Erlangen Longitudinal Vibration Study II“ (ELVIS-II) in drei Gruppen aufgeteilt: Zwei Trainingsgruppen (je n = 36) führten über ein Jahr ein identisches Programm auf zwei unterschiedlichen Plattensystemen dreimal wöchentlich für jeweils 15 min durch: 1. vertikal vibrierend: 35 Hz, 1,7 mm (VG); 2. seitenalternierend vibrierend: 12,5 Hz, 12 mm (RG). Die Kontrollgruppe (KG: n = 36) absolvierte im selben Zeitraum ein niedrigintensives Gymnastikprogramm. Untersucht wurden Veränderungen der Muskelkraft und -leistung, der Körperzusammensetzung mittels Dual-X-ray-Absorptiometrie (DXA) und des Schmerzniveaus.

Ergebnisse: Zwischen den Vibrationsformen zeigte sich für keinen der oben aufgeführten Parameter ein signifikanter Unterschied. Im Vergleich mit der Kontrollgruppe wiesen beide Trainingsgruppen signifikante Effekte für die Maximalkraft der Beine (VG: 24,4 %; RG: 26,6 %; KG: 6,2 %; p < 0,001) und der Rumpfbeuger (VG: 12,2 %, RG: 11,5 %, KG: -5,5 %, p = 0,01) auf. Keine Zwischengruppenunterschiede konnten für die Parameter der Körperzusammensetzung (fettfreie Masse, appendikuläre Muskelmasse und Fettmasse) nachgewiesen werden. Ferner zeigten sich günstige Effekte bezüglich der Schmerzintensität an den großen Gelenken (p = 0,004); an der LWS war dieser Befund nicht signifikant. In den GKV-Gruppen trat kein Fall von Beschwerden auf, der in einen Zusammenhang mit dem Vibrationstraining gebracht werden konnte.

Folgerung: Unabhängig vom Vibrationssystem belegen die Studienergebnisse, dass GKV eine schonende und zeitsparende Alternative zu klassischen Trainingsinhalten mit dem Fokus auf Kraftsteigerung und Schmerzreduktion sein könnte.

Abstract

Purpose: The effects of different types of whole body vibration (WBV) training on neuromuscular performance and body composition were determined in postmenopausal women.

Methods: In the Erlangen Longitudinal Vibration Study II (ELVIS-II-Study) 108 postmenopausal women between 60 and 75 years of age (average 65.8 ± 3.5 years) were randomly assigned to one of three groups: two WBV training-groups (n = 36 each), each performing an identical program thrice a week for 15 min on two different types of vibration plates for one year: 1. vertical vibrating, 35 Hz, 1.7 mm (VG); 2. rotational vibrating 12.5 Hz, 12 mm (RG). A control group (n = 36) conducted a low intensity gymnastic and relaxation program. Muscular strength and power were assessed, body composition was determined by Dual-energy X-ray absorptiometry (DXA), and pain intensity was assessed by a questionnaire.

Results: Maximum leg strength (VG: 24.4 %; RG: 26.6 %; KG: 6.2 %; p < 0.001) and maximum trunk flexion strength (VG: 12.2 %; RG: 11.5 %; KG: -5.5 %; p = 0.01) significantly increased in both vibration groups. No changes were found for body composition parameters (lean body mass, appendicular muscle mass, fat mass). Pain intensity in the big joints (p < 0.05) decreased in both vibration groups, in the lumbar spine region this was not significant. There was no difference between vibration types. No vibration-related side effects were observed.

Conclusion: The study results suggest that WBV might be an alternative to classic training contents to increase maximum strength and reduce pain.

Literatur

  • 1 Abercromby A F, Amonette W E, Layne C S, McFarlin B K, Hinman M R, Paloski W H. Variation in neuromuscular responses during acute whole-body vibration exercise.  Med Sci Sports Exerc. 2007;  39 1642-1650
  • 2 Abercromby A F, Amonette W E, Layne C S, McFarlin B K, Hinman M R, Paloski W H. Vibration exposure and biodynamic responses during whole-body vibration training.  Med Sci Sports Exerc. 2007;  39 1794-1800
  • 3 Bautmans I, Van Hees E, Lemper J C, Mets T. The feasibility of whole body vibration in institutionalised elderly persons and its influence on muscle performance, balance and mobility.  BMC Geriatr. 2005;  5 17
  • 4 Bogaerts A, Delecluse C, Claessens A L, Coudyzer W, Boonen S, Verschueren S M. Impact of whole-body vibration training versus fitness training on muscle strength and muscle mass in older men.  J Gerontol A Biol Sci Med Sci. 2007;  62 630-635
  • 5 Bosco C, Colli R, Introini E. et al . Adaptive responses of human skeletal muscle to vibration exposure.  Clin Physiol. 1999;  19 183-187
  • 6 Bruyere O, Wuidart M A, Di Palma E. et al . Controlled whole body vibration to decrease fall risk and improve health-related quality of life of nursing home residents.  Arch Phys Med Rehabil. 2005;  86 303-307
  • 7 Chen Z, Wang Z, Lohman T. et al . Dual-energy X-ray absorptiometry is a valid tool for assessing skeletal muscle mass in older women.  J Nutr. 2007;  137 2775-2780
  • 8 Clarke M S. The effects of exercise on skeletal muscle in the aged.  J Musculoskelet Neuronal Interact. 2004;  4 175-178
  • 9 Cohen J. Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988
  • 10 Fjeldstad C, Palmer I J, Bemben M G, Bemben D A. Whole-body vibration augments resistance training effects on body composition in postmenopausal women.  Maturitas. 2009;  63 79-83
  • 11 Heymsfield S B, Smith R, Aulet M. Appendicular skeletal muscle mass: measurement by dual-photon absorptiometry.  Am J Clin Nutr. 1990;  52 214-218
  • 12 Iwamoto J, Takeda T, Sato Y, Uzawa M. Effect of whole-body vibration exercise on lumbar bone mineral density, bone turnover, and chronic back pain in post-menopausal osteoporotic women treated with alendronate.  Aging Clin Exp Res. 2005;  17 157-163
  • 13 Kemmler W, Lauber D, Weineck J, Hensen J, Kalender W, Engelke K. Benefits of 2 years of intense exercise on bone density, physical fitness, and blood lipids in early postmenopausal osteopenic women: results of the Erlangen Fitness Osteoporosis Prevention Study (EFOPS).  Arch Intern Med. 2004;  164 1084-1091
  • 14 Kiiski J, Heinonen A, Jarvinen T L, Kannus P, Sievanen H. Transmission of vertical whole body vibration to the human body.  J Bone Miner Res. 2008;  23 1318-1325
  • 15 Machado A, Garcia-Lopez D, Gonzalez-Gallego J, Garatachea N. Whole-body vibration training increases muscle strength and mass in older women.  Scand J Med Sci Sports. 2010;  20 200-207
  • 16 Merriman H, Jackson K. The effects of whole-body vibration training in aging adults.  J Geriatr Phys Ther. 2009;  32 134-145
  • 17 Mori S, Tuji S, Kawamoto M. et al . Six Month Whole Body Vibration Exercises Improves Leg Muscle Strength, Balance as well as Calcaneal Bone Mineral Density of Community Dwelled Elderly.  JBMR. 2006;  1 Suppl 249
  • 18 Narici M V, Reeves N D, Morse C I, Maganaris C N. Muscular adaptations to resistance exercise in the elderly.  J Musculoskelet Neuronal Interact. 2004;  4 161-164
  • 19 Pollock R D, Woledge R C, Mills K R, Martin F C, Newham D J. Muscle activity and acceleration during whole body vibration: effect of frequency and amplitude.  Clin Biomech (Bristol, Avon). 2010;  25 840-846
  • 20 Rapp W, Boeer J, Albrich C, Heitkamp H -C. Efficiency of vibration or strength training for knee stability in osteoarthritis of the knee.  Akt Rheumatol. 2009;  34 240-245
  • 21 Rittweger J, Beller G, Felsenberg D. Acute physiological effects of exhaustive whole-body vibration exercise in man.  Clin Physiol. 2000;  20 134-142
  • 22 Rittweger J, Just K, Kautzsch K, Reeg P, Felsenberg D. Treatment of chronic lower back pain with lumbar extension and whole-body vibration exercise.  Spine. 2002;  27 1829-1834
  • 23 Roelants M, Delecluse C, Verschueren S M. Whole-body-vibration training increases knee-extension strength and speed of movement in older women.  J Am Geriatr Soc. 2004;  52 901-908
  • 24 Rosenberg I H. Sarcopenia: origins and clinical relevance.  J Nutr. 1997;  127 990-991
  • 25 Ruan X Y, Jin F Y, Liu Y L, Peng Z L, Sun Y G. Effects of vibration therapy on bone mineral density in postmenopausal women with osteoporosis.  Chin Med J (Engl). 2008;  121 1155-1158
  • 26 Runge M, Rehfeld G, Resnicek E. Balance training and exercise in geriatric patients.  J Musculoskelet Neuronal Interact. 2000;  1 61-65
  • 27 Russo C R, Lauretani F, Bandinelli S. et al . High-frequency vibration training increases muscle power in postmenopausal women.  Arch Phys Med Rehabil. 2003;  84 1854-1857
  • 28 Savelberg H H, Keizer H A, Meijer K. Whole-body vibration induced adaptation in knee extensors; consequences of initial strength, vibration frequency, and joint angle.  J Strength Cond Res. 2007;  21 589-593
  • 29 Sherk V D, Palmer I J, Bemben M G, Bemben D. Relationships between body composition, muscular strength, and bone mineral density in estrogen-deficient postmenopausal women.  J Clin Densitom. 2009;  12 292-298
  • 30 Sigrist M, Lammel C, Jeschke D. Krafttraining an konventionellen bzw. oszillierenden Geräten und Wirbelsäulengymnastik in der Prävention der Osteoporose bei postemenopausalen Frauen.  Dtsch Z Sportmed. 2006;  57 182-188
  • 31 Taaffe D R. Sarcopenia – exercise as a treatment strategy.  Aust Fam Physician. 2006;  35 130-134
  • 32 Verschueren S M, Bogaerts A, Delecluse C, Claessens A L, Haentjens P. et al . The effects of whole body vibration training and vitamin D supplementation on muscle strength, muscle mass and bone density in institutionalised elderly women.  J Bone Miner Res. 2011;  26 42-49
  • 33 Verschueren S M, Roelants M, Delecluse C, Swinnen S, Vanderschueren D, Boonen S. v Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women: a randomized controlled pilot study.  J Bone Miner Res. 2004;  19 352-359
  • 34 von Stengel S, Kemmler W, Bebenek M, Engelke K, Kalender W. Effects of whole body vibration training on different devices on bone mineral density.  Med Sci Sports Exerc. 2010;  Epub ahead of print
  • 35 von Stengel S, Kemmler W, Engelke K, Kalender W. Effect of whole body vibration on neuromuscular performance and body composition for females 65 years and older.  Scand J Med Sci Sports. 2010;  Epub ahead of print
  • 36 von Stengel S, Kemmler W, Engelke K, Kalender W A. Effects of whole body vibration on bone mineral density and falls: results of the randomized controlled ELVIS study with postmenopausal women.  Osteoporos Int. 2011;  22 317-325
  • 37 von Stengel S, Kemmler W, Engelke K, Kalender W A. Effekte eines Ganzkörpervibrationstrainings auf Parameter des Frakturrisikos; Einjahresergebnisse der randomisierten kontrollierten ELVIS-Studie.  Dtsch Med Wochenschr. 2009;  134 1511-1516
  • 38 Weineck J. Optimales Training. Erlangen: Balingen: Spitta GmbH; 2007

Andreas Klarner

Fachklinik Herzogenaurach

In der Reuth 1

91074 Herzogenaurach

eMail: andreas.klarner@fachklinik-herzogenaurach.de