Synlett 2012; 23(13): 1857-1864
DOI: 10.1055/s-0032-1316591
account
© Georg Thieme Verlag Stuttgart · New York

Stereocontrol Strategies in the Asymmetric Bioreduction of Alkenes

Gustav Oberdorfer
a   ACIB GmbH, c/o, Humboldstr. 50, 8010 Graz, Austria
b   Institute of Molecular Biosciences, Humboldstr. 50, 8010 Graz, Austria
,
Karl Gruber
b   Institute of Molecular Biosciences, Humboldstr. 50, 8010 Graz, Austria
,
Kurt Faber*
c   Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstr. 28, 8010 Graz, Austria, Fax: +43(316)3809840   Email: Kurt.Faber@Uni-Graz.at   Email: Melanie.Hall@Uni-Graz.at
,
Mélanie Hall*
c   Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstr. 28, 8010 Graz, Austria, Fax: +43(316)3809840   Email: Kurt.Faber@Uni-Graz.at   Email: Melanie.Hall@Uni-Graz.at
› Author Affiliations
Further Information

Publication History

Received: 03 May 2012

Accepted (after revision): 08 June 2012

Publication Date:
17 July 2012 (online)


Abstract

The asymmetric bioreduction of prochiral conjugated alkenes using ene-reductases allows powerful strategies to access both enantiomers of the product with high stereoselectivity. This may be achieved (i) by using pairs of (iso)enzymes, which bind the alkene moiety in mirror-image orientations to affect hydride attack from opposite sides, (ii) via a switch in the (E/Z)-geometry of the alkene unit, or (iii) by changing the size of the protective groups of the substrate, which enforces a flipped orientation in the active site. Modeling studies provide a rationale for the molecular basis of substrate binding and allow the prediction of the stereochemical outcome of this useful bioreduction.

1 Introduction

2 Enzyme-Based Stereocontrol: ‘Enantiomeric’ Ene-reductases

3 Substrate-Based Stereocontrol: Flipping Substrates

3.1 Stereocontrol via (E/Z)-Configuration of Substrate

3.2 Stereocontrol via Substituent Effects

4 Modeling of Substrate Complexes

5 Conclusions