Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2012; 44(17): 2682-2694
DOI: 10.1055/s-0032-1316758
DOI: 10.1055/s-0032-1316758
feature article
Conformationally Restricted Peptide Mimetics by Ring-Closing Olefin Metathesis
Further Information
Publication History
Received: 25 May 2012
Accepted after revision: 27 June 2012
Publication Date:
06 August 2012 (online)
Abstract
Elegant chemical methodology restricting the backbone flexibility of biologically active peptides has attracted growing interest. A practical synthetic strategy is presented to access ten-membered lactam peptide mimetics. Employing a ring-closing olefin metathesis as the key reaction step, the cyclic olefin moiety was obtained with cis configuration. Conformational investigations were performed with two model peptides.
Key words
peptide mimetics - cyclic olefins - ring-closing metathesis - conformational investigations - medicinal chemistrySupporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synthesis.
- Supporting Information
-
References
- 1a Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M. Drug Discovery Today 2010; 15: 40
- 1b Sato AK, Viswanathan M, Kent RB, Wood CR. Curr. Opin. Biotechnol. 2006; 17: 638
- 2 Bray BL. Nat. Rev. Drug Discovery 2003; 2: 587
- 3 Hruby VJ. Drug Discovery Today 1997; 2: 165 ; and references cited therein
- 4 See, for example: Giannis A, Kolter T. Angew. Chem. Int. Ed. 1993; 32: 1244
- 5a Kahn M, Chen B. Tetrahedron Lett. 1987; 28: 1623
- 5b Hinds MG, Welsh JH, Brennand DM, Fisher J, Glennie MJ, Richards NG. J, Turner DL, Robinson JA. J. Med. Chem. 1991; 34: 1777
- 5c Hanessian S, McNaughton-Smith G, Lombart H.-G, Lubell WD. Tetrahedron 1997; 53: 12789
- 5d Souers AJ, Virgilio AA, Rosenquist A, Fenuik W, Ellman JA. J. Am. Chem. Soc. 1999; 121: 1817
- 5e Freidinger RM. J. Med. Chem. 2003; 46: 5553
- 5f Stepien A, Loska R, Cmoch P, Stalinsky K. Synlett 2005; 83
- 5g Wang W, Xiong C, Hruby VJ. Tetrahedron Lett. 2001; 42: 3159
- 5h Pawar VG, De Borggraeve WM, Maes V, Tourwé DA, Compernolle F, Hoornaert GJ. Tetrahedron Lett. 2005; 46: 1707
- 5i Albericio F, Arvidson PI, Bisetty K, Giralt E, Govender T, Jali S, Kongsaeree P, Kruger HG, Prabpai S. Chem. Biol. Drug Des. 2008; 71: 125
- 5j Ko E, Burgess K. Org. Lett. 2011; 13: 980
- 6 Grubbs RH, Chang S. Tetrahedron 1998; 54: 4413
- 7 De Vega MJ. P, García-Aranda MI, González-Muniz R. Med. Res. Rev. 2011; 31: 677
- 8 Di Cianni A, Carotenuto A, Brancaccio D, Novellino E, Reubi JC, Beetschen K, Papini AM, Ginanneschi M. J. Med. Chem. 2010; 53: 6188
- 9 Grubbs RH, Blackwell HE. Angew. Chem. Int. Ed. 1998; 37: 3281
- 10a Bernal F, Tyler AF, Korsmeyer SJ, Walensky LD, Verdine GL. J. Am. Chem. Soc. 2007; 129: 2456
- 10b Moellering RE, Cornejo M, Davis TN, Del Bianco C, Aster JC, Blacklow SC, Kung AL, Gilliland DG, Verdine GL, Bradner JE. Nature (London) 2009; 462: 182
- 11 Chapman RN, Dimartino G, Arora PS. J. Am. Chem. Soc. 2004; 126: 12252
- 12 Miller SJ, Blackwell HE, Grubbs RH. J. Am. Chem. Soc. 1996; 118: 9606
- 13 Reichwein JF, Liskamp RM. J. Eur. J. Org. Chem. 2000; 2335
- 14 Freidinger RM. J. Org. Chem. 1985; 50: 3631
- 15 Piscopio AD, Miller JF, Koch K. Tetrahedron 1999; 55: 8189
- 16 Hoffmann T, Waibel R, Gmeiner P. J. Org. Chem. 2003; 68: 62
- 17 Hoffmann T, Gmeiner P. Synlett 2002; 1014
- 18 Einsiedel J, Lanig H, Waibel R, Gmeiner P. J. Org. Chem. 2007; 72: 9102
- 19 Bittermann H, Boeckler F, Einsiedel J, Gmeiner P. Chem.–Eur. J. 2006; 12: 6315
- 20 Beal LM, Liu B, Chu W, Moeller KD. Tetrahedron 2000; 56: 10113
- 21a Grossmith CE, Senia F, Wagner J. Synlett 1999; 1660
- 21b Zaminer J, Brockmann C, Huy P, Opitz R, Reuter C, Beyermann M, Freund C, Mueller M, Oschkinat H, Kuehne R, Schmalz H.-G. Angew. Chem. Int. Ed. 2010; 49: 7111
- 22 Hoffmann T, Waibel R, Gmeiner P. Angew. Chem. Int. Ed. 2001; 40: 3661
- 23 Banfi L, Basso A, Guanti G, Riva R. Tetrahedron Lett. 2003; 44: 7655
- 24 Kaul R, Surprenant S, Lubell WD. J. Org. Chem. 2005; 70: 3838 ; corrigendum: J. Org. Chem. 2005, 70, 4901
- 25 Fink BE, Kym PR, Katzenellenbogen JA. J. Am. Chem. Soc. 1998; 120: 4334
- 26 Pinsker A, Einsiedel J, Haerterich S, Waibel R, Gmeiner P. Org. Lett. 2011; 13: 3502
- 27 Anderson GW, Zimmerman JE, Callahan FM. J. Am. Chem. Soc. 1967; 89: 5012
- 28 Compound 3a is described in: Senokuchi K, Nakai H, Nakayama Y, Odagaki Y, Sakaki K, Kato M, Maruyama T, Miyazaki T, Ito H, Kamiyasu K, Kim S.-i, Kawamura M, Hamanaka N. J. Med. Chem. 1995; 38: 2521 ; however a protocol for the preparation is not given. We obtained 3a when following the procedure for the synthesis of N-allylglycine ethyl ester described in ref. 13 starting from tert-butyl bromoacetate and allylamine
- 29 Maynard HD, Grubbs RH. Tetrahedron Lett. 1999; 40: 4137
- 30 Henchey LK, Porter JR, Ghosh I, Arora PS. ChemBioChem 2010; 11: 2104
- 31 El-Faham A, Albericio F. J. Pept. Sci. 2010; 16: 6
- 32 Compound 3c is described in ref. 11, however, we preferred the synthesis via direct allylation of alanine tert-butyl ester with allyl bromide
See, for example: