Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2012; 44(18): 2885-2888
DOI: 10.1055/s-0032-1316760
DOI: 10.1055/s-0032-1316760
paper
Palladium-Catalyzed Carbonylation with Mo(CO)6 for the Synthesis of Benzoylacetonitriles
Further Information
Publication History
Received: 04 May 2012
Accepted after revision: 29 June 2012
Publication Date:
16 August 2012 (online)
Abstract
Benzoylacetonitriles were synthesized by the palladium-catalyzed carbonylation of aryl iodides and trimethylsilylacetonitrile using Mo(CO)6 as a carbon monoxide source. Pd(PPh3)Cl2 and CuF2 were employed as the catalyst and activator, respectively. A variety of aryl iodides bearing alkyl, alkoxy, fluoro, chloro, bromo, nitrile, ester, and ketone groups afforded the corresponding benzoylacetonitriles in moderate to good yields.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synthesis.
- Supporting Information
-
References
- 1a Colquhoun HM, Thompson DJ, Twigg MV. Carbonylation: Direct Synthesis of Carbonyl Compounds . Plenum; New York: 1991
- 1b El Ali B, Alper H In Transition Metals for Organic Synthesis . 2nd ed., Beller M, Bolm C. Wiley-VCH; Weinheim: 2004. Vol. 1 113-132
- 1c Van Leeuwen PW. N. M, Freixa Z In Modern Carbonylation Methods . Kollar L. Wiley-VCH; Weinheim: 2008: 1-25
- 2a Schoenberg A, Bartoletti I, Heck RF. J. Org. Chem. 1974; 39: 3318
- 2b Schoenberg A, Heck RF. J. Org. Chem. 1974; 39: 3327
- 3a Wu X.-F, Neumann H, Beller M. Angew. Chem. Int. Ed. 2010; 49: 5284
- 3b Wu X.-F, Neumann H, Spannenberg A, Schulz T, Jiao H, Beller M. J. Am. Chem. Soc. 2010; 132: 14596
- 4a Tamaru Y, Ochiai H, Yamada Y, Yoshida Z.-i. Tetrahedron Lett. 1983; 24: 3869
- 4b Custar DW, Le H, Morken JP. Org. Lett. 2010; 12: 3760
- 5a Dubbaka SR, Vogel P. J. Am. Chem. Soc. 2003; 125: 15292
- 5b Lindh J, Fardost A, Almeida M, Nilsson P. Tetrahedron Lett. 2010; 51: 2470
- 6a Ishiyama T, Kizaki H, Hayashi T, Suzuki A, Miyaura N. J. Org. Chem. 1998; 63: 4726
- 6b Neumann H, Brennführer A, Beller M. Adv. Synth. Catal. 2008; 350: 2437
- 7 Natanaka Y, Hiyama T. Chem. Lett. 1989; 2049
- 8a Miao H, Yang Z. Org. Lett. 2000; 2: 1765
- 8b Park A, Park K, Kim Y, Lee S. Org. Lett. 2011; 13: 944
- 9 Gøgsig TM, Taaning RH, Lindhardt AT, Skrydstrup T. Angew. Chem. Int. Ed. 2012; 51: 798
- 10a Kobayashi T, Tanaka M. Tetrahedron Lett. 1986; 27: 4745
- 10b Campo MA, Larock RC. Org. Lett. 2000; 2: 3675
- 10c Wu XF, Anbarasan P, Neumann H, Beller M. Angew. Chem. Int. Ed. 2010; 49: 7316
- 11 Klaus S, Neumann H, Zapf A, Strübing D, Hübner S, Almena J, Riermeier T, Groß P, Sarich M, Krahnert W.-R, Rossen K, Beller M. Angew. Chem. Int. Ed. 2006; 45: 154
- 12 Liu Q, Li G, He J, Liu J, Li P, Lei A. Angew. Chem. Int. Ed. 2010; 49: 3371
- 13 Park A, Lee S. Org. Lett. 2012; 14: 1118
- 14 Ji Y, Trenkke WC, Vowles JV. Org. Lett. 2006; 8: 1161
- 15 Ranatunge RR, Garvey DS, Janero DR, Letts LG, Martino AM, Murty MG, Richardson SK, Young DV, Zemetseva IS. Bioorg. Med. Chem. 2004; 12: 1357
- 16 Hauser CR, Eby CJ. J. Am. Chem. Soc. 1957; 79: 728
- 17 Ankati H, Zhu D, Yang Y, Biehl ER, Hua L. J. Org. Chem. 2009; 74: 1658
- 18 Hu J, Wei Y, Tong X. Org. Lett. 2011; 13: 3068
- 19 Danence LJ. T, Gao Y, Li M, Huang Y, Wang J. Chem.–Eur. J. 2011; 17: 3584
- 20 Morimoto T, Kakiuchi K. Angew. Chem. Int. Ed. 2004; 43: 5580
- 21a Larhed M, Moberg C, Hallberg A. Acc. Chem. Res. 2002; 35: 717
- 21b Gold H, Ax A, Vrang L, Samuelsson B, Karlén A, Hallberg A, Larhed M. Tetrahedron 2006; 62: 4671
- 21c Georgsson J, Hallberg A, Larhed M. J. Comb. Chem. 2003; 5: 350
- 21d Wu X, Mahalingam AK, Wan Y, Alterman M. Tetrahedron Lett. 2004; 45: 4635
- 21e Wu X, Larhed M. Org. Lett. 2005; 7: 3327
- 21f Wannberg J, Kaiser N.-FK, Vrang L, Samuelsson B, Larhed M, Hallberg A. J. Comb. Chem. 2005; 7: 611
- 21g Cao H, Xiao W.-J. Can. J. Chem. 2005; 83: 826
- 21h Wannberg J, Dallinger D, Kappe CO, Larhed M. J. Comb. Chem. 2005; 7: 574
- 21i Wu X, Wannberg J, Larhed M. Tetrahedron 2006; 62: 4665
- 21j Wu X, Ekegren JK, Larhed M. Organometallics 2006; 25: 1434
- 21k Lagerlund O, Larhed M. J. Comb. Chem. 2006; 8: 4
- 21l Wu X, Rönn R, Gossas T, Larhed M. J. Org. Chem. 2005; 70: 3094
- 21m Letavic MA, Ly KS. Tetrahedron Lett. 2007; 48: 2339
- 22 Lindh J, Fardost A, Almeida M, Nilsson P. Tetrahedron Lett. 2010; 51: 2470
- 23 Wan Y, Alterman M, Larhed M, Hallberg A. J. Org. Chem. 2002; 67: 6232
- 24a Sangu K, Watanabe T, Takaya J, Iwasawa N. Synlett 2007; 929
- 24b Takaya J, Sangu K, Iwasawa N. Angew. Chem. Int. Ed. 2009; 48: 7091
- 25 To simplify the analysis, DMF-d 7 was employed instead of CD3CN. See the Supporting Information.
- 26 Hartwig reported that no generation of (CH3)3SiF occurred when trimethylsilylacetonirile and ZnF2 were reacted, see: Wu L, Hartwig JF. J. Am. Chem. Soc. 2005; 127: 15824