Synthesis 2012; 44(18): 2885-2888
DOI: 10.1055/s-0032-1316760
paper
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Carbonylation with Mo(CO)6 for the Synthesis of Benzoylacetonitriles

Ayoung Pyo
a   Department of Chemistry, Chonnam National University, 300 Youngbong-dong, Buk-gu, Gwangju 500-757, Republic of Korea, Fax: +82(62)5303389   Email: sunwoo@chonnam.ac.kr
,
Ahbyeol Park
a   Department of Chemistry, Chonnam National University, 300 Youngbong-dong, Buk-gu, Gwangju 500-757, Republic of Korea, Fax: +82(62)5303389   Email: sunwoo@chonnam.ac.kr
,
Hyun Min Jung
b   Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi, 730-701, Republic of Korea
,
Sunwoo Lee*
a   Department of Chemistry, Chonnam National University, 300 Youngbong-dong, Buk-gu, Gwangju 500-757, Republic of Korea, Fax: +82(62)5303389   Email: sunwoo@chonnam.ac.kr
› Author Affiliations
Further Information

Publication History

Received: 04 May 2012

Accepted after revision: 29 June 2012

Publication Date:
16 August 2012 (online)


Abstract

Benzoylacetonitriles were synthesized by the palladium-catalyzed carbonylation of aryl iodides and trimethylsilylacetonitrile using Mo(CO)6 as a carbon monoxide source. Pd(PPh3)Cl2 and CuF2 were employed as the catalyst and activator, respectively. A variety of aryl iodides bearing alkyl, alkoxy, fluoro, chloro, bromo, nitrile, ester, and ketone groups afforded the corresponding benzoylacetonitriles in moderate to good yields.

Supporting Information

 
  • References

    • 1a Colquhoun HM, Thompson DJ, Twigg MV. Carbonylation: Direct Synthesis of Carbonyl Compounds . Plenum; New York: 1991
    • 1b El Ali B, Alper H In Transition Metals for Organic Synthesis . 2nd ed., Beller M, Bolm C. Wiley-VCH; Weinheim: 2004. Vol. 1 113-132
    • 1c Van Leeuwen PW. N. M, Freixa Z In Modern Carbonylation Methods . Kollar L. Wiley-VCH; Weinheim: 2008: 1-25
    • 2a Schoenberg A, Bartoletti I, Heck RF. J. Org. Chem. 1974; 39: 3318
    • 2b Schoenberg A, Heck RF. J. Org. Chem. 1974; 39: 3327
    • 3a Wu X.-F, Neumann H, Beller M. Angew. Chem. Int. Ed. 2010; 49: 5284
    • 3b Wu X.-F, Neumann H, Spannenberg A, Schulz T, Jiao H, Beller M. J. Am. Chem. Soc. 2010; 132: 14596
    • 4a Tamaru Y, Ochiai H, Yamada Y, Yoshida Z.-i. Tetrahedron Lett. 1983; 24: 3869
    • 4b Custar DW, Le H, Morken JP. Org. Lett. 2010; 12: 3760
    • 5a Dubbaka SR, Vogel P. J. Am. Chem. Soc. 2003; 125: 15292
    • 5b Lindh J, Fardost A, Almeida M, Nilsson P. Tetrahedron Lett. 2010; 51: 2470
    • 6a Ishiyama T, Kizaki H, Hayashi T, Suzuki A, Miyaura N. J. Org. Chem. 1998; 63: 4726
    • 6b Neumann H, Brennführer A, Beller M. Adv. Synth. Catal. 2008; 350: 2437
  • 7 Natanaka Y, Hiyama T. Chem. Lett. 1989; 2049
    • 8a Miao H, Yang Z. Org. Lett. 2000; 2: 1765
    • 8b Park A, Park K, Kim Y, Lee S. Org. Lett. 2011; 13: 944
  • 9 Gøgsig TM, Taaning RH, Lindhardt AT, Skrydstrup T. Angew. Chem. Int. Ed. 2012; 51: 798
    • 10a Kobayashi T, Tanaka M. Tetrahedron Lett. 1986; 27: 4745
    • 10b Campo MA, Larock RC. Org. Lett. 2000; 2: 3675
    • 10c Wu XF, Anbarasan P, Neumann H, Beller M. Angew. Chem. Int. Ed. 2010; 49: 7316
  • 11 Klaus S, Neumann H, Zapf A, Strübing D, Hübner S, Almena J, Riermeier T, Groß P, Sarich M, Krahnert W.-R, Rossen K, Beller M. Angew. Chem. Int. Ed. 2006; 45: 154
  • 12 Liu Q, Li G, He J, Liu J, Li P, Lei A. Angew. Chem. Int. Ed. 2010; 49: 3371
  • 13 Park A, Lee S. Org. Lett. 2012; 14: 1118
  • 14 Ji Y, Trenkke WC, Vowles JV. Org. Lett. 2006; 8: 1161
  • 15 Ranatunge RR, Garvey DS, Janero DR, Letts LG, Martino AM, Murty MG, Richardson SK, Young DV, Zemetseva IS. Bioorg. Med. Chem. 2004; 12: 1357
  • 16 Hauser CR, Eby CJ. J. Am. Chem. Soc. 1957; 79: 728
  • 17 Ankati H, Zhu D, Yang Y, Biehl ER, Hua L. J. Org. Chem. 2009; 74: 1658
  • 18 Hu J, Wei Y, Tong X. Org. Lett. 2011; 13: 3068
  • 19 Danence LJ. T, Gao Y, Li M, Huang Y, Wang J. Chem.–Eur. J. 2011; 17: 3584
  • 20 Morimoto T, Kakiuchi K. Angew. Chem. Int. Ed. 2004; 43: 5580
    • 21a Larhed M, Moberg C, Hallberg A. Acc. Chem. Res. 2002; 35: 717
    • 21b Gold H, Ax A, Vrang L, Samuelsson B, Karlén A, Hallberg A, Larhed M. Tetrahedron 2006; 62: 4671
    • 21c Georgsson J, Hallberg A, Larhed M. J. Comb. Chem. 2003; 5: 350
    • 21d Wu X, Mahalingam AK, Wan Y, Alterman M. Tetrahedron Lett. 2004; 45: 4635
    • 21e Wu X, Larhed M. Org. Lett. 2005; 7: 3327
    • 21f Wannberg J, Kaiser N.-FK, Vrang L, Samuelsson B, Larhed M, Hallberg A. J. Comb. Chem. 2005; 7: 611
    • 21g Cao H, Xiao W.-J. Can. J. Chem. 2005; 83: 826
    • 21h Wannberg J, Dallinger D, Kappe CO, Larhed M. J. Comb. Chem. 2005; 7: 574
    • 21i Wu X, Wannberg J, Larhed M. Tetrahedron 2006; 62: 4665
    • 21j Wu X, Ekegren JK, Larhed M. Organometallics 2006; 25: 1434
    • 21k Lagerlund O, Larhed M. J. Comb. Chem. 2006; 8: 4
    • 21l Wu X, Rönn R, Gossas T, Larhed M. J. Org. Chem. 2005; 70: 3094
    • 21m Letavic MA, Ly KS. Tetrahedron Lett. 2007; 48: 2339
  • 22 Lindh J, Fardost A, Almeida M, Nilsson P. Tetrahedron Lett. 2010; 51: 2470
  • 23 Wan Y, Alterman M, Larhed M, Hallberg A. J. Org. Chem. 2002; 67: 6232
    • 24a Sangu K, Watanabe T, Takaya J, Iwasawa N. Synlett 2007; 929
    • 24b Takaya J, Sangu K, Iwasawa N. Angew. Chem. Int. Ed. 2009; 48: 7091
  • 25 To simplify the analysis, DMF-d 7 was employed instead of CD3CN. See the Supporting Information.
  • 26 Hartwig reported that no generation of (CH3)3SiF occurred when trimethylsilylacetonirile and ZnF2 were reacted, see: Wu L, Hartwig JF. J. Am. Chem. Soc. 2005; 127: 15824