Synthesis 2013; 45(4): 545-555
DOI: 10.1055/s-0032-1316839
paper
© Georg Thieme Verlag Stuttgart · New York

Facile Synthesis of [1,2,3]-Triazole-Fused Isoindolines, Tetrahydroisoquino­lines, Benzoazepines and Benzoazocines by Palladium-Copper Catalysed Heterocyclisation­

Kaushik Brahma
Chemistry Division, Indian Institute of Chemical Biology (CSIR), 4, Raja S. C. Mullick Road, Kolkata 700032, India   Fax: +91(33)24735971   eMail: chinmay@iicb.res.in
,
Basudeb Achari
Chemistry Division, Indian Institute of Chemical Biology (CSIR), 4, Raja S. C. Mullick Road, Kolkata 700032, India   Fax: +91(33)24735971   eMail: chinmay@iicb.res.in
,
Chinmay Chowdhury*
Chemistry Division, Indian Institute of Chemical Biology (CSIR), 4, Raja S. C. Mullick Road, Kolkata 700032, India   Fax: +91(33)24735971   eMail: chinmay@iicb.res.in
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 05. November 2012

Accepted after revision: 06. Dezember 2012

Publikationsdatum:
04. Januar 2013 (online)


Abstract

An elegant method for the synthesis of 1,2,3-triazoles fused with five-, six-, seven- and eight-membered benzoheterocycles, including isoindoline, tetrahydroisoquinoline, benzoazepine and benzoazocine, has been developed via palladium-copper catalysed reactions in one-pot. The broad scope of this reaction was illustrated by effecting bis-heteroannulations, synthesis of uracil derivatives of biological interest, and employment of acetylene gas as an inexpensive substrate. The reactions are experimentally simple and utilise easily accessible substrates of different types.

Supporting Information

 
  • References

  • 2 Holub JM, Kirshenbaum K. Chem. Soc. Rev. 2010; 39: 1325
  • 7 Ackermann L, Potukuchi HK, Landsberg D, Vicente R. Org. Lett. 2008; 10: 3081
  • 8 For a review article, see: Majumdar KC, Ray K. Synthesis 2011; 3767

    • For biological activities, see:
    • 9a Berger D, Citarella R, Dutia M, Greenberger L, Hallett W, Paul R, Powell D. J. Med. Chem. 1999; 42: 2145
    • 9b Alanine A, Burner S, Buettelmann B, Heitz NM, Jaeschke G, Pinard E, Wyler R. Eur. Pat. Appl. EP1090917, 2001 ; Chem. Abstr. 2001, 134, 280719b
    • 9c Goethem SV, Matheeussen V, Joossens J, Lambeir A.-M, Chen X, Meester ID, Haemers A, Augustyns K, der Veken PV. J. Med. Chem. 2011; 54: 5737
  • 13 Das Adhikary N, Chattopadhyay P. J. Org. Chem. 2012; 77: 5399
  • 14 Endo Y, Ohno M, Hirano M, Itai A, Shudo K. J. Am. Chem. Soc. 1996; 118: 1841
    • 15a Snyder PJ, Werth J, Giordani B, Caveney AF, Feltner D, Maruff P. Hum. Psychopharmacol. Clin. Exp. 2005; 20: 263
    • 15b Greenblatt DJ, Harmatz JS, Shapiro L, Engelhardt N, Gouthro TA, Shader RI. N. Engl. J. Med. 1991; 324: 1691
    • 15c Georgiev S, Loev B, Mack R, Musser J. US Patent US 4276292, 1981 ; Chem. Abstr. 1981, 95, 132905v
    • 15d Tatsuta K, Ikeda Y, Miura S. J. Antibiot. 1996; 49: 836
    • 15e Bromidge SM, Arban R, Bertani B, Bison S, Borriello M, Cavanni P, Dal Forno G, Di-Fabio R, Donati D, Fontana S, Gianotti M, Gordon LJ, Granei E, Leslie CP, Moccia L, Pasquarello A, Sartori I, Sava A, Watson JM, Worby A, Zonzini L, Zucchelli V. J. Med. Chem. 2010; 53: 5827
    • 16a Kallander LS, Lu Q, Chen W, Tomaszek T, Yang G, Tew D, Meek TD, Hoffmann GA, Schulz-Pritchard CK, Smith WW, Janson CA, Ryan MD, Zhang G.-F, Johanson KO, Kirkpatrick RB, Ho TF, Fisher PW, Mattern MR, Johnson RK, Hansbury MJ, Winkler JD, Ward KW, Veber DF, Thompson SK. J. Med. Chem. 2005; 48: 5644
    • 16b Niculescu-Duvaz D, Niculescu-Duvaz I, Suijkerbuijk BM. J. M, Menard D, Zambon A, Nourry A, Davies L, Manne HA, Friedlos F, Ogilvie L, Hedley D, Takle AK, Wilson DM, Pons J.-F, Coulter T, Kirk R, Cantarino N, Whittaker S, Marais R, Springer CJ. Bioorg. Med. Chem. 2010; 18: 6934
  • 20 For a preliminary communication, see: Chowdhury C, Mandal SB, Achari B. Tetrahedron Lett. 2005; 46: 8531
    • 22a Heidelberger C. Pyrimidine and Pyrimidine Antimetabolites in Cancer Medicines . Holland JF, Frei E. Lea and Febiger; Philadelphia: 1984: 801
    • 22b Onishi T, Mukai C, Nakagawa R, Sekiyama T, Aoki M, Suzuki K, Nakazawa H, Ono N, Ohmura Y, Iwayama S, Okunishi M, Tsuji T. J. Med. Chem. 2000; 43: 278 ; and references cited therein
    • 23a Das B, Chowdhury C, Kumar D, Sen R, Roy R, Das P, Chatterjee M. Bioorg. Med. Chem. Lett. 2010; 20: 6947
    • 23b Srivastava V, Darokar MP, Fatima A, Kumar JK, Chowdhury C, Saxena HO, Dwivedi GR, Shrivastava K, Gupta V, Chattopadhyay SK, Luqman S, Gupta MM, Negi AS, Khanuja SP. S. Bioorg. Med. Chem. 2007; 15: 518
  • 24 Cytotoxicities of compounds 11a and 11b against various cancer cell lines are currently under study.
  • 25 Based on control experiments and known features of palladium chemistry, a plausible reaction mechanism can be envisaged. Mechanistically, the active catalytic species Pd(0) is generated in situ by dimerization, to a small extent, of acetylenic compound 8. Next, coupling of 8 with iodide 7 takes place through the Sonogashira pathway, see: Sonogashira K, Tohda Y, Haghihara N. Tetrahedron Lett. 1975; 50: 4467 ; leading to the formation of intermediate o-alkynyl azide derivative, which is then converted into products 14 through intramolecular [3+2] cycloaddition between azide and alkyne moieties. An alternative mechanism involving copper-assisted regioselective [3+2] cycloaddition between acetylene and azide groups of substrates 8 and 7, leading to the formation of intermediate 1,4-substituted 1,2,3-triazoles 9 (X = I), which may undergo intramolecular coupling with aryl iodide through C–H bond activation to form the products 14, was ruled out on the basis of control experiments