Subscribe to RSS
DOI: 10.1055/s-0032-1316864
Enantioselective Rauhut–Currier-Type Cyclizations via Dienamine Activation: Scope and Mechanism
Publication History
Received: 05 November 2012
Accepted after revision: 16 February 2013
Publication Date:
13 March 2013 (online)
Abstract
This Feature Article describes our mechanistic studies in organocatalytic Rauhut–Currier-type reactions and some applications in target-oriented synthesis. The developed approach involves the cyclization of two tethered Michael acceptors via dienamine intermediates and leads to highly functionalized cycloalkenes. The utility of these intermediates is further demonstrated by the synthesis of biologically important targets, such as optically active iridoid derivatives.
1 Introduction
2 Organocatalytic Cyclization of Tethered α,β-Unsaturated Carbonyl Compounds; Synthesis of Cyclopentene Derivatives
2.1 Mechanistic Proposal
2.1.1 ESI-HRMS Measurements
2.1.2 NMR Experiments
2.1.3 Complementary Reactivity
2.2 Synthetic Applications
3 Organocatalytic Cyclization of Tethered α,β-Unsaturated Carbonyl Compounds; Synthesis of Cyclohexene Derivatives
4 Conclusions
Key words
asymmetric synthesis - organocatalysis - dienamine activation - Rauhut–Currier reaction - Michael addition - reaction mechanismsSupporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synthesis.
- Supporting Information
-
References
- 1 New address for E. Marqués-López and R. P. Herrera.
- 2 Asymmetric Synthesis: More Methods and Applications. Christmann M, Bräse S. Wiley-VCH; Weinheim: 2012
- 3a Dalko PI, Moisan L. Angew. Chem. Int. Ed. 2004; 43: 5138
- 3b Asymmetric Organocatalysis. Berkessel A, Gröger H. Wiley-VCH; Weinheim: 2004
- 3c Seayed J, List B. Org. Biomol. Chem. 2005; 3: 719
- 3d Enantioselective Organocatalysis. Dalko PI. Wiley-VCH; Weinheim: 2007
- 3e Dondoni A, Massi A. Angew. Chem. Int. Ed. 2008; 47: 4638
- 3f Buckley BR, Kimber MC, Slater NH. Annu. Rep. Prog. Chem., Sect. B: Org. Chem. 2012; 108: 98
- 3g Science of Synthesis: Asymmetric Organocatalysis. Vol. 1. List B. Thieme; Stuttgart: 2012
- 3h Asymmetric Organocatalysis: Science of Synthesis. Vol. 2. Maruoka K. Thieme; Stuttgart: 2012
- 3i Comprehensive Enantioselective Organocatalysis. Dalko PI. Wiley-VCH; Weinheim: 2013
- 3j Acc. Chem. Res. 2004; 37: 487-631
- 3k Top. Curr. Chem. 2009; 291: 1-460
- 3l Chem. Rev. 2007; 107: 5413-5883
- 3m Curr. Org. Chem. 2011; 15: 2082-2327
- 4a de Figueiredo RM, Christmann M. Eur. J. Org. Chem. 2007; 2575
- 4b Marqués-López E, Herrera RP, Christmann M. Nat. Prod. Rep. 2010; 27: 1138
- 4c Christmann M. Applications of Aminocatalysis in Target-Oriented Synthesis. In Asymmetric Organocatalysis: Science of Synthesis. Vol. 1. List B. Thieme; Stuttgart: 2012: 439
- 4d Marqués-López E, Herrera RP In Comprehensive Enantioselective Organocatalysis. Dalko PI. Wiley-VCH; Weinheim: 2013
- 5a Palomo C, Mielgo A. Angew. Chem. Int. Ed. 2006; 45: 7876
- 5b Mielgo A, Palomo C. Chem. Asian J. 2008; 3: 922
- 5c Barbas III CF. Angew. Chem. Int. Ed. 2008; 47: 42
- 5d Melchiorre P, Marigo M, Carlone A, Bartoli G. Angew. Chem. Int. Ed. 2008; 47: 6138
- 5e Bertelsen S, Jørgensen KA. Chem. Soc. Rev. 2009; 38: 2178
- 5f List B. Angew. Chem. Int. Ed. 2010; 49: 1730
- 6a Peng F, Shao Z. J. Mol. Catal. A: Chem. 2008; 285: 1
- 6b Xu L.-W, Luo J, Lu Y. Chem. Commun. 2009; 1807
- 7a Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
- 7b Phiko PM, Majander I, Erkkilä A. Top. Curr. Chem. 2010; 291: 29
- 8a Erkkilä A, Majander I, Phiko PM. Chem. Rev. 2007; 107: 5416
- 8b Brazier JB, Tomkinson NC. O. Top. Curr. Chem. 2010; 291: 281
- 9a Marigo M, Jørgensen KA. Chem. Commun. 2006; 2001
- 9b Guillena G, Ramón DJ. Tetrahedron: Asymmetry 2006; 17: 1465
- 10a Tsogoeva SB. Eur. J. Org. Chem. 2007; 1701
- 10b Almasi D, Alonso DA, Nájera C. Tetrahedron: Asymmetry 2007; 18: 299
- 10c Vicario JL, Badía D, Carrillo L. Synthesis 2007; 2065
- 11a Ramachary DB, Reddy YV. Eur. J. Org. Chem. 2012; 865
- 11b Christmann M. Asymmetric Dienamine Activation. In Asymmetric Synthesis: More Methods and Applications. Christmann M, Bräse S. Wiley-VCH: Weinheim: 2012: 43
- 12 For a recent review on trienamine catalysis, see: Kumar I, Ramaraju P, Mir NA. Org. Biomol. Chem. 2013; 11: 709; and references cited therein
- 13a Chen S.-H, Hong B.-C, Su C.-F, Sarshar S. Tetrahedron Lett. 2005; 46: 8899
- 13b Bertelsen S, Marigo M, Brandes S, Dinér P, Jørgensen KA. J. Am. Chem. Soc. 2006; 128: 12973
- 13c Hong B.-C, Wu M.-F, Tseng H.-C, Liao J.-H. Org. Lett. 2006; 8: 2217
- 13d Bench BJ, Liu C, Evett CR, Watanabe CM. H. J. Org. Chem. 2006; 71: 9458
- 13e Utsumi N, Zhang H, Tanaka F, Barbas III CF. Angew. Chem. Int. Ed. 2007; 46: 1878
- 14a Marqués-López E, Herrera RP, Marks T, Jacobs WC, Könning D, de Figueiredo RM, Christmann M. Org. Lett. 2009; 11: 4116
- 14b Han B, Xiao Y.-C, He Z.-Q, Chen Y.-C. Org. Lett. 2009; 11: 4660
- 14c Han B, Xiao Y.-C, Yao Y, Chen Y.-C. Angew. Chem. Int. Ed. 2010; 49: 10189
- 15a Bencivenni G, Galzerano P, Mazzanti A, Bartoli G, Melchiorre P. Proc. Natl. Acad. Sci. U. S. A. 2010; 107: 20642
- 15b Bergonzini G, Vera S, Melchiorre P. Angew. Chem. Int. Ed. 2010; 49: 9685
- 15c Stiller J, Marqués-López E, Herrera RP, Fröhlich R, Strohmann C, Christmann M. Org. Lett. 2011; 13: 70
- 15d Silvi M, Cassania C, Morana A, Melchiorre P. Helv. Chim. Acta 2012; 95: 1985
- 15e Bastida D, Liu Y, Tian X, Escudero-Adán E, Melchiorre P. Org. Lett. 2013; 15: 220
- 16 For a recent example of organocascade reaction involving dienamine catalysis, see: Appayee C, Fraboni AJ, Brenner-Moyer SE. J. Org. Chem. 2012; 77: 8828
- 17a Hong B.-C, Tseng H.-C, Chen S.-H. Tetrahedron 2007; 63: 2840
- 17b Hong B.-C, Wu M.-F, Tseng H.-C, Huang G.-F, Su C.-F, Liao J.-H. J. Org. Chem. 2007; 72: 8459
- 17c de Figueiredo RM, Fröhlich R, Christmann M. Angew. Chem. Int. Ed. 2008; 47: 1450
- 17d Orue A, Reyes E, Vicario JL, Carrillo L, Uria U. Org. Lett. 2012; 14: 3740
- 17e Feng X, Zhou Z, Zhou R, Zhou Q.-Q, Dong L, Chen Y.-C. J. Am. Chem. Soc. 2012; 134: 19942
- 18a Han B, He Z.-Q, Li J.-L, Li R, Jiang K, Liu T.-Y, Chen Y.-C. Angew. Chem. Int. Ed. 2009; 48: 5474
- 18b Li J.-L, Kang T.-R, Zhou S.-L, Li R, Wu L, Chen Y.-C. Angew. Chem. Int. Ed. 2010; 49: 6418
- 18c Li J.-L, Zhou S.-L, Chen P.-Q, Dong L, Liu T.-Y, Chen Y.-C. Chem. Sci. 2012; 3: 1879
- 19a Albrecht Ł, Dickmeiss G, Cruz Acosta F, Rodríguez-Escrich C, Davis RL, Jørgensen KA. J. Am. Chem. Soc. 2012; 134: 2543
- 19b Talavera G, Reyes E, Vicario JL, Carrillo L. Angew. Chem. Int. Ed. 2012; 51: 4104
- 20 Rauhut MM, Currier H. US 3074999, 1963
- 21 For a review on Rauhut–Currier reactions, see: Aroyan CE, Dermenci A, Miller SJ. Tetrahedron 2009; 65: 4069
- 22a Masson G, Housseman C, Zhu J. Angew. Chem. Int. Ed. 2007; 46: 4614
- 22b Mansilla J, Saá JM. Molecules 2010; 15: 709
- 22c Basavaiah D, Reddy BS, Badsara SS. Chem. Rev. 2010; 110: 5447
- 23 Erguden JK, Moore HW. Org. Lett. 1999; 1: 375
- 24 Wang L.-C, Luis AL, Agapiou K, Jang H.-Y, Krische MJ. J. Am. Chem. Soc. 2002; 124: 2402
- 25a Frank SA, Mergott DJ, Roush WR. J. Am. Chem. Soc. 2002; 124: 2404
- 25b Thalji RK, Roush WR. J. Am. Chem. Soc. 2005; 127: 16778
- 26a Aroyan CE, Miller SJ. J. Am. Chem. Soc. 2007; 129: 256
- 26b Aroyan CE, Dermenci A, Miller SJ. J. Org. Chem. 2010; 75: 5784
- 26c Dermenci A, Selig PS, Domaoal RA, Spasov KA, Anderson KS, Miller SJ. Chem. Sci. 2011; 2: 1568
- 27 Gong J.-J, Li T.-Z, Pan K, Wu X.-Y. Chem. Commun. 2011; 47: 1491
- 28 Wang X.-F, Peng L, An J, Li C, Yang Q.-Q, Lu L.-Q, Gu F.-L, Xiao W.-J. Chem. Eur. J. 2011; 17: 6484
- 29a Takizawa S, Nguyen TM.-N, Grossmann A, Enders D, Sasai H. Angew. Chem. Int. Ed. 2012; 51: 5423
- 29b Takizawa S, Nguyen TM.-N, Grossmann A, Suzuki M, Enders D, Sasai H. Tetrahedron 2013; 69: 1202
- 30 Zhang X.-N, Shi M. Eur. J. Org. Chem. 2012; 6271
- 31 Jin Z, Yang R, Du Y, Tiwari B, Ganguly R, Chi YR. Org. Lett. 2012; 14: 3226
- 32 For a non-organocatalyzed example, see: Seidel F, Gladysz JA. Synlett 2007; 986
- 33a Selig PS, Miller SJ. Tetrahedron Lett. 2011; 52: 2148
- 33b MacKay JA, Landis ZC, Motika SE, Kench MH. J. Org. Chem. 2012; 77: 7768
- 34a Zhong C, Chen Y, Petersen JL, Akhmedov NG, Shi X. Angew. Chem. Int. Ed. 2009; 48: 1279
- 34b Zhao Q.-Y, Pei C.-K, Guan X.-Y, Shi M. Adv. Synth. Catal. 2011; 353: 1973
- 34c Atienza RL, Scheidt KA. Aust. J. Chem. 2011; 64: 1158
- 34d Shi Z, Yu P, Loh T.-P, Zhong G. Angew. Chem. Int. Ed. 2012; 51: 7825
- 35a Reynolds TE, Binkley MS, Scheidt KA. Org. Lett. 2008; 10: 2449
- 35b Yao W, Wu Y, Wang G, Zhang Y, Ma C. Angew. Chem. Int. Ed. 2009; 48: 9713
- 35c Shanbhag P, Nareddy PR, Dadwal M, Mobin MS, Namboothiri IN. N. Org. Biomol. Chem. 2010; 8: 4867
- 35d Xie P, Huang Y, Lai W, Meng X, Chen R. Org. Biomol. Chem. 2011; 9: 6707
- 35e Ma J, Xie P, Hu C, Huang Y, Chen R. Chem. Eur. J. 2011; 17: 7418
- 35f Liu W, Zhou J, Zheng C, Chen X, Xiao H, Yang Y, Guo Y, Zhao G. Tetrahedron 2011; 67: 1768
- 35g Hu C, Geng Z, Ma J, Huang Y, Chen R. Chem. Asian J. 2012; 7: 2032
- 35h Shi Z, Tong Q, Wen W, Leong Y, Zhong G. Chem. Eur. J. 2012; 18: 9802
- 36a Hudlicky T, Price JD. Chem. Rev. 1989; 89: 1467
- 36b Hartley RC, Caldwell ST. J. Chem. Soc., Perkin Trans. 1 2000; 477
- 36c Heasley B. Eur. J. Org. Chem. 2009; 1477
- 37 Tundis R, Loizzo MR, Menichini F, Statti GA, Menichini F. Mini-Rev. Med. Chem. 2008; 8: 399
- 38 Boros CA, Stermitz FR. J. Nat. Prod. 1990; 53: 1055
- 39a Tietze L.-F. Angew. Chem., Int. Ed. Engl. 1983; 22: 828
- 39b Villasenor IM. Anti-inflammatory Anti-allergy Agents Med. Chem. 2007; 6: 307
- 40 Kim HJ, Ruszczycky MW, Choi S.-h, Liu Y.-n, Liu H.-w. Nature (London) 2011; 473: 109
- 41a Lorenz M, Boland W, Dettner K. Angew. Chem., Int. Ed. Engl. 1993; 32: 912
- 41b Weibel DB, Oldham NJ, Feld B, Glombitza G, Dettner K, Boland W. Insect Biochem. Mol. Biol. 2001; 31: 583
- 41c Kunert M, Rahfeld P, Shaker KH, Schneider B, David A, Dettner K, Pasteels JM, Boland W. ChemBioChem 2013; 14: 353
- 42a Shi M, Liu Y. Org. Biomol. Chem. 2006; 4: 1468
- 42b Abermil N, Masson G, Zhu J. J. Am. Chem. Soc. 2008; 130: 12596
- 42c Yukawa T, Seelig B, Xu Y, Morimoto H, Matsunaga S, Berkessel A, Shibasaki M. J. Am. Chem. Soc. 2010; 132: 11988
- 43 Watanabe K, Takada Y, Matsuo N, Nishimura H. Biosci. Biotech. Biochem. 1996; 59: 1979
- 44 For the first total synthesis of (R)- and (S)-rotundial, see: Takikawa H, Yamazaki Y, Mori K. Eur. J. Org. Chem. 1998; 229
- 45 See the experimental section.
- 46a Seebach D, Grošelj U, Badine DM, Schweizer WB, Beck AK. Helv. Chim. Acta 2008; 91: 1999
- 46b Grošelj U, Schweizer WB, Ebert M.-O, Seebach D. Helv. Chim. Acta 2009; 92: 1
- 47 For theoretical discussions concerning dienamine intermediates, see: Duarte FJ. S, Cabrita EJ, Frenking G, Santos AG. Chem. Eur. J. 2009; 15: 1734
- 48 E/Z-Isomerization of the enol moiety of 5 could lead to an intramolecular attack of the iminium ion and to a dead end in the catalytic cycle.
- 49 Preparation of the ESI-HRMS sample: After 5 min of reaction, a 20-μL sample of the mixture was removed, and the solvent was evaporated. The residue was solved in MeCN (1 mL).
- 50 Schmid MB, Zeitler K, Gschwind RM. Angew. Chem. Int. Ed. 2010; 49: 4997
- 51a Weinges K, Ziegler HJ, Maurer W, Schmidbauer SB. Liebigs Ann. Chem. 1993; 1029
- 51b Yamane T, Takahashi M, Ogasawara K. Synthesis 1995; 444
- 52a Amri H, Villieras J. Tetrahedron Lett. 1987; 28: 5521
- 52b Bouyssi D, Monteire N, Balme G. Tetrahedron Lett. 1999; 40: 1297
- 53 Ohta H, Kobori T, Fujisawa T. J. Org. Chem. 1977; 42: 1231
- 54 Wilson RM, Jen WS, MacMillan DW. C. J. Am. Chem. Soc. 2005; 127: 11616
- 55 X ray crystallographic analysis data for 27. CCDC 813588 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- 56 The absolute configuration for compounds 21a,b and 27 was not assigned unambiguously.
- 57 For more details see Supporting Information.
- 58 The synthesis of the products as racemic mixtures were carried out using a mixture of both enantiomers of the catalyst [(S)-IV/(R)-IV) 1:1].
For selected reviews on organocatalysis, see for example:
Special issues on asymmetric organocatalysis in:
Special issues on organocatalysis in:
For applications of organocatalysis in the synthesis of natural products and non-natural biologically active molecules, see:
For reviews on aminocatalysis, see:
For reviews about organocatalytic reactions catalyzed by chiral primary amines, see:
For reviews, see:
For reviews, see:
For reviews on α-functionalization using enamine activation, see for example:
For reviews on conjugated additions using iminium ion activation see, for example:
For recent reviews on dienamine catalysis, see:
For pioneering work, see:
For examples of inverse-electron-demand Diels–Alder reactions, see:
For examples of asymmetric organocatalytic formal [2+2] cycloadditions, see:
For reviews on Morita–Baylis–Hillman reaction, see:
For an example of the application of the Rauhut–Currier reaction in the synthesis of natural products, see:
For other examples of intramolecular non-chiral Rauhut–Currier reaction, see:
For examples of aza-Rauhut–Currier reactions, see:
For selected examples of non-enantioselective intermolecular Rauhut–Currier reactions, see:
For examples of non-enantioselective Rauhut–Currier domino reactions, see:
For examples of aza-Rauhut–Currier reactions, see:
For reviews on cyclopentenes, see:
For references of the effect of Brønsted acids in the Morita–Baylis–Hillman reaction, see: