Subscribe to RSS
DOI: 10.1055/s-0032-1316988
Investigations into Transition-Metal-Catalyzed Arene Trifluoromethylation Reactions
Publication History
Received: 25 May 2012
Accepted after revision: 09 July 2012
Publication Date:
08 August 2012 (online)
Abstract
Trifluoromethyl-substituted arenes and heteroarenes are widely prevalent in pharmaceuticals and agrochemicals. As a result, the development of practical methods for the formation of aryl–CF3 bonds has become an active field of research. Over the past five years, transition-metal-catalyzed cross-coupling between aryl–X (X = halide, organometallic, or H) and various ‘CF3’ reagents has emerged as a particularly attractive approach to generating aryl–CF3 bonds. Despite many recent advances in this area, current methods generally suffer from limitations such as poor generality, harsh reaction conditions, the requirement for stoichiometric quantities of metals, and/or the use of costly CF3 sources. This Account describes our recent efforts to address some of these challenges by: (1) developing aryltrifluoromethylation reactions involving high oxidation state Pd intermediates, (2) exploiting AgCF3 for C–H trifluoromethylation, and (3) achieving Cu-catalyzed trifluoromethylation with photogenerated CF3 •.
1 Introduction
2 Part 1. Aryltrifluoromethylation via High-Valent Palladium
3 Part 2. Aryltrifluoromethylation Using AgCF3
4 Part 3. Cu-Catalyzed Aryltrifluoromethylation with CF3•
5 Outlook
-
References
- 1a Schlosser M. Angew. Chem. Int. Ed. 2006; 45: 5432
- 1b Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
- 1c Hagmann WK. J. Med. Chem. 2008; 51: 4359
- 1d Kirk KL. Org. Process Res. Dev. 2008; 12: 305
- 1e Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
- 1f Tomashenko OA, Grushin VV. Chem. Rev. 2011; 111: 4475
- 1g Roy S, Gregg BT, Gribble GW, Le V.-D. Tetrahedron 2011; 67: 2161
- 2a Furuya T, Kamlet AS, Ritter T. Nature 2011; 473: 470
- 2b Grushin VV. Acc. Chem. Res. 2010; 43: 160
- 3 Swarts F. Bull. Acad. R. Belg. 1892; 24: 309
- 4a Grushin VV, Marshall WJ. J. Am. Chem. Soc. 2006; 128: 12644
- 4b Bakhmutov VI, Bozoglian F, Gomez K, Gonzalez G, Grushin VV, Macgregor SA, Martin E, Miloserdov FM, Novikov MA, Panetier JA, Romashov LV. Organometallics 2012; 31: 1315
- 5a Dubinina GG, Furutachi H, Vicic DA. J. Am. Chem. Soc. 2008; 130: 8600
- 5b Dubinina GG, Ogikubo J, Vicic DA. Organometallics 2008; 27: 6233
- 6 Oishi M, Kondo H, Amii H. Chem. Commun. 2009; 1909
- 7 Cho EJ, Senecal TD, Kinzel T, Zhang Y, Watson DA, Buchwald SL. Science 2010; 328: 1679
- 8a Hickman AJ, Sanford MS. Nature 2012; 484: 177
- 8b Muniz K. Angew. Chem. Int. Ed. 2009; 48: 9412
-
8c Lyons T, Sanford MS. Chem. Rev. 2010; 110: 1147
- 9a Ball ND, Kampf JW, Sanford MS. J. Am. Chem. Soc. 2010; 132: 2878
- 9b Ball ND, Gary JB, Ye Y, Sanford MS. J. Am. Chem. Soc. 2011; 133: 7577
- 10a Ball ND, Sanford MS. J. Am. Chem. Soc. 2009; 131: 3796
- 10b Ball ND, Kampf JW, Sanford MS. Dalton Trans. 2010; 632
- 10c Canty AJ. Acc. Chem. Res. 1992; 25: 83
- 11a Racowski JM, Gary JB, Sanford MS. Angew. Chem. Int. Ed. 2012; 51: 3414
- 11b Furuya T, Benitez D, Tkatchouk E, Strom AE, Tang P, Goddard WA. I, Ritter T. J. Am. Chem. Soc. 2010; 132: 3793
- 12 Markies BA, Canty AJ, Boersma J, van Koten G. Organometallics 1994; 13: 2053
- 13 Mu X, Chen S, Zhen X, Liu G. Chem. Eur. J. 2011; 17: 6039
- 14 Mu X, Wu T, Wang H.-Y, Guo Y.-L, Liu G. J. Am. Chem. Soc. 2012; 134: 878
- 15 Racowski JM, Dick AR, Sanford MS. J. Am. Chem. Soc. 2009; 131: 10974
- 17 Ye Y, Ball ND, Kampf JW, Sanford MS. J. Am. Chem. Soc. 2010; 132: 14682
- 18 Wang X, Truesdale L, Yu J.-Q. J. Am. Chem. Soc. 2010; 132: 3648
- 19a Furuya T, Strom AE, Ritter T. J. Am. Chem. Soc. 2009; 131: 1662
- 19b Furuya T, Ritter T. Org. Lett. 2009; 11: 2860
- 19c Tang P, Ritter T. Tetrahedron 2011; 67: 4449
-
20a Tyrra WE, Naumann D. J. Fluorine Chem. 2004; 125: 823
- 20b Weng Z, Lee R, Jia W, Yuan Y, Wang W, Feng X, Huang KW. Organometallics 2011; 30: 3229
-
21 Ye Y, Lee SH, Sanford MS. Org. Lett. 2011; 13: 5464
- 22a Wakselman C, Tordeux M. J. Chem. Soc., Chem. Commun. 1987; 1701
- 22b Akiyama T, Kato K, Kajitani M, Sakaguchi Y, Nakamura J, Hayashi H, Sugimori A. Bull. Chem. Soc. Jpn. 1988; 61: 3531
- 22c Sawada H, Nakayama M. J. Fluorine Chem. 1990; 46: 423
- 22d Langlois BR, Laurent E, Roidot M. Tetrahedron Lett. 1991; 32: 7525
- 22e McClinton MA, McClington DA. Tetrahedron 1992; 48: 6555
- 22f Kamigata N, Ohtsuka T, Fukushima T, Yoshida M, Shimizu T. J. Chem. Soc., Perkin Trans. 1 1994; 1339
- 22g Kino T, Nagase Y, Ohtsuka Y, Yamamoto K, Uraguchi D, Tokuhisa K, Yamakawa T. J. Fluorine Chem. 2010; 131: 98
- 22h Loy RN, Sanford MS. Org. Lett. 2011; 13: 2548
- 23 Ji Y, Brueckl T, Baxter RD, Fujiwara Y, Seiple IB, Su S, Blackmond DG, Baran PS. Proc. Natl. Acad. Sci. U.S.A. 2011; 108: 14411
- 24 Nagib DA, MacMillan DW. C. Nature 2011; 480: 224
- 25 Iqbal N, Choi S, Ko E, Cho EJ. Tetrahedron Lett. 2012; 53: 2005
- 26a Chu L, Qing FL. Org. Lett. 2010; 12: 5060
- 26b Senecal TD, Parsons AT, Buchwald SL. J. Org. Chem. 2011; 76: 1174
- 26c Khan BA, Buba AE, Gooßen LJ. Chem. Eur. J. 2012; 18: 1577
- 26d Jiang X, Chu L, Qing F.-L. J. Org. Chem. 2012; 77: 1251
- 27 For an example of trifluoromethyl copper(I) reagent derived from CF3 –, see: Morimoto H, Tsubogo T, Litvinas ND, Hartwig JF. Angew. Chem. Int. Ed. 2011; 50: 3793
- 28a Liu T, Shen Q. Org. Lett. 2011; 13: 2342
- 28b Xu J, Luo DF, Xiao B, Liu J, Gong TJ, Fu Y, Liu L. Chem. Commun. 2011; 47: 4300
- 28c Zhang CP, Wang ZL, Chen QY, Zhang CT, Gu YC, Xiao JC. Angew. Chem. Int. Ed. 2011; 50: 1896
- 29a Nagib DA, Scott ME, MacMillan DW. C. J. Am. Chem. Soc. 2009; 131: 10875
- 29b Pham PV, Nagib DA, MacMillan DW. C. Angew. Chem. Int. Ed. 2011; 50: 6119
- 30 Ye Y, Sanford MS. J. Am. Chem. Soc. 2012; 134: 9034
- 31 Li YC. T, Wang H, Zhang R, Jin K, Wang X, Duan C. Synlett 2011; 1713
- 32 Zhang C.-P, Cai J, Zhou C.-B, Wang X.-P, Zheng X, Gu Y.-C, Xiao J.-C. Chem. Commun. 2011; 47: 9516
- 33 Besset T, Schneider C, Cahard D. Angew. Chem. Int. Ed. 2012; 51: 5048