Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2012; 23(17): 2491-2496
DOI: 10.1055/s-0032-1317191
DOI: 10.1055/s-0032-1317191
letter
Copper-Catalyzed Oxidative Cyanation of Aryl Halides with Nitriles Involving Carbon–Carbon Cleavage
Further Information
Publication History
Received: 23 July 2012
Accepted after revision: 07 August 2012
Publication Date:
21 September 2012 (online)
![](https://www.thieme-connect.de/media/synlett/201217/lookinside/thumbnails/10.1055-s-0032-1317191-1.jpg)
Abstract
A novel, general route for the synthesis of aromatic nitriles is presented that proceeds through Cu(OAc)2-catalyzed oxidative cyanation of aryl halides using commercially available nitriles as the cyanide sources and Ag2O/air as the oxidizing agent. It is noteworthy that this work provides a new example of using acetonitrile as the cyanide source for aromatic nitrile synthesis through a Cu-catalyzed oxidative C–C bond cleavage and cyanation process.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References and Notes
- 1a Anbarasan P, Schareina T, Beller M. Chem. Soc. Rev. 2011; 40: 5049
- 1b Magano J, Dunetz JR. Chem. Rev. 2011; 111: 2177
- 1c Jones LH, Summerhill NW, Swain NA, Mills JE. Med. Chem. Commun. 2010; 1: 309
- 1d Torborg C, Beller M. Adv. Synth. Catal. 2009; 351: 3027
- 1e Zapf A, Beller M. Chem. Commun. 2005; 431
- 1f Sundermeier M, Zapf A, Beller M. Eur. J. Inorg. Chem. 2003; 3513
- 2a Larock RC. Comprehensive Organic Transformations: A Guide to Functional Group Preparations. VCH; New York: 1989
- 2b Rappoport Z. The Chemistry of the Cyano Group . Interscience Publishers; London: 1970
- 3 Takagi K, Okamoto T, Sakakibara Y, Oka S. Chem. Lett. 1973; 471
- 4a Cassar L. J. Organomet. Chem. 1973; 54: C57
- 4b Cassar L, Ferrara S, Foa M. Homogeneous Catalysis II . Gould RF. American Chemical Society; Washington: 1974. Chap. 17, 252-273
- 5a Schareina T, Zapf A, Beller M. Chem. Commun. 2004; 1388
- 5b Grushin VV, Alper H. Chem. Rev. 1994; 94: 1047
- 5c Ellis GA, Romney-Alexander TM. Chem. Rev. 1987; 87: 779
- 6a For KCN, see: Li C, Ju Y, Liu F. Org. Lett. 2009; 11: 3582
- 6b Arai S, Sato T, Nishida A. Adv. Synth. Catal. 2009; 351: 1897
- 6c Yang C, Williams JM. Org. Lett. 2004; 6: 2837
- 6d For NaCN, see: Zhang Z, Wang Z, Zhang R, Ding K. Angew. Chem. Int. Ed. 2010; 49: 6746
- 6e Do H.-Q, Daugulis O. Org. Lett. 2010; 12: 2517
- 6f Murahashi S.-I, Nakae T, Terai H, Komiya N. J. Am. Chem. Soc. 2008; 130: 11005
- 6g Erhardt S, Grushin VV, Kilpatrick AH, Macgregor SA, Marshall WJ, Roe DC. J. Am. Chem. Soc. 2008; 130: 4828
- 6h Ushkov AV, Grushin VV. J. Am. Chem. Soc. 2011; 133: 10999
- 6i Cristau H.-J, Ouali A, Spindler J.-F, Taillefer M. Chem. Eur. J. 2005; 11: 2483
- 6j For CuCN, see: Reddy BV. S, Begum Z, Reddy YJ, Yadav JS. Tetrahedron Lett. 2010; 51: 3334
- 6k For Zn(CN)2, see: Liskey CW, Liao X, Hartwig JF. J. Am. Chem. Soc. 2010; 132: 11389
- 6l Shevlin M. Tetrahedron Lett. 2010; 51: 4833
- 6m Buono FG, Chidambaram R, Mueller RH, Waltermire RE. Org. Lett. 2008; 10: 5325
- 6n Littke A, Soumeillant M, Kaltenbach RF. III, Cherney RJ, Tarby CM, Kiau S. Org. Lett. 2007; 9: 1711
- 6o For [K4Fe(CN)6], see: Yeung PY, So CM, Lau CP, Kwong FY. Angew. Chem. Int. Ed. 2010; 49: 8918
- 6p DeBlase C, Leadbeater NE. Tetrahedron 2010; 66: 1098
- 6q Yan G, Kuang C, Zhang Y, Wang J. Org. Lett. 2010; 12: 1052
- 6r Zhao Z, Li Z. Eur. J. Org. Chem. 2010; 5460
- 6s Velmathi S, Leadbeater NE. Tetrahedron Lett. 2008; 49: 4693
- 6t For TMSCN, see: Arai S, Koike Y, Nishida A. Adv. Synth. Catal. 2010; 352: 893
- 6u Arai S, Sato T, Koike Y, Hayashi M, Nishida A. Angew. Chem. Int. Ed. 2009; 48: 4528
- 6v Han W, Ofial AR. Chem. Commun. 2009; 5024
- 6w Chen G, Wang Z, Wu J, Ding K. Org. Lett. 2008; 10: 4573
- 6x For MeCN, see: Guo F.-H, Chu C.-I, Cheng C.-H. Organometallics 1998; 17: 1025
- 6y For nitriles, see: Garcia JJ, Jones WD. Organometallics 2000; 19: 5544
- 6z For other CN sources, see: Garcia JJ, Brunkan NM, Jones WD. J. Am. Chem. Soc. 2002; 124: 9547
- 6aa Zhang G, Ren X, Chen J, Hu M, Cheng J. Org. Lett. 2011; 13: 5004
- 7a Schareina T, Zapf A, Cotté A, Gotta M, Beller M. Adv. Synth. Catal. 2011; 353: 777 ; and references cited therein
- 7b Park EJ, Lee S, Chang S. J. Org. Chem. 2010; 75: 2760
- 8a Kim J, Chang S. J. Am. Chem. Soc. 2010; 132: 10272
- 8b Jia X, Yang D, Zhang S, Cheng J. Org. Lett. 2009; 11: 4716
- 8c Jia X, Yang D, Wang W, Luo F, Cheng J. J. Org. Chem. 2009; 74: 9470
- 8d Chen X, Hao X.-S, Goodhue CE, Yu J.-Q. J. Am. Chem. Soc. 2006; 128: 6790
- 8e Ding S, Jiao N. J. Am. Chem. Soc. 2011; 133: 12374
- 8f Kin J, Choi J, Shin K, Chang S. J. Am. Chem. Soc. 2012; 134: 2528
- 9a Nakao Y, Yada A, Hiyama T. J. Am. Chem. Soc. 2010; 132: 10024
- 9b Yada A, Yukawa T, Idei H, Nakao Y, Hiyama T. Bull. Chem. Soc. Jpn. 2010; 83: 619
- 9c Yada A, Yukawa T, Nakao Y, Hiyama T. Chem. Commun. 2009; 3931
- 9d Nakao Y, Yada A, Ebata S, Hiyama T. J. Am. Chem. Soc. 2007; 129: 2428
- 10 See Figure S1 and Scheme S1 in the Supporting Information for detailed data.
- 11 Copper-Catalyzed Oxidative Cyanation of Aryl Halides with Nitriles; Typical Procedure: To a Schlenk tube were added aryl halide 1 (0.3 mmol), Cu(OAc)2 (20 mol%), triphenylphosphine oxide (40 mol%), Ag2O (1 equiv) and MeCN (1 mL) at room temperature. Then the tube was stirred at 125 °C (thermometer temperature) for the indicated time until complete consumption of starting material was observed (reaction monitored by TLC and GC-MS analysis). Upon completion, the reaction mixture was diluted in diethyl ether and washed with brine. The aqueous phase was re-extracted with diethyl ether. The combined organic extracts were dried over Na2SO4 and concentrated under vacuum, and the resulting residue was purified by silica gel column chromatography (hexane–ethyl acetate) to afford the product. 4-Methoxybenzonitrile (3): Yield: 36.3 mg (91%); white solid. 1H NMR (500 MHz, DMSO-d 6): δ = 7.76–7.74 (m, 2 H), 7.10–7.08 (m, 2 H), 3.83 (s, 3 H). 13C NMR (125 MHz, DMSO-d 6): δ = 162.2, 133.6, 118.6, 114.6, 102.3, 55.1. MS (EI, 70 eV): m/z (%) = 133 (100) [M]+, 102 (43). See also: Zhou W., Xu J.-J., Zhang L.-R., Jiao. N.; Org. Lett.; 2010, 12: 2888.
- 12 Substrates with acidic groups, including OH groups, cannot be used for transition-metal-catalyzed cyanation with an ionic alkali metal cyanide because they can react with the cyanide salt to release HCN leading to instant deactivation of the catalyst, see refs 2,5,6
- 13a For representative papers on the formation of the Cu(III) intermediate in the first oxidative addition step with the aid of oxidizing reagents, see: Ley SV, Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400
- 13b Collman JP, Zhong M. Org. Lett. 2000; 2: 1233
- 13c Evans DA, Katz JL, West TR. Tetrahedron Lett. 1998; 39: 2937
- 13d Barton DH. R, Finet JP, Khamsi J. Tetrahedron Lett. 1987; 28: 887
- 13e Paine AJ. J. Am. Chem. Soc. 1987; 109: 1496
- 13f Litvak VV, Shein SM. Zh. Org. Khim. 1975; 11: 92
- 14 During the cyanation of 1-iodo-4-methoxybenzene (1a) with 2-phenylacetonitrile (2b), benzoic acid was observed by GC-MS analysis (about 10% GC yield). Under the present optimal conditions, benzaldehyde can be readily oxidized to benzoic acid.
For selected recent reviews, see:
For selected reviews, see:
For selected papers, see:
For a representative paper on the use of Me2C(OH)CN as the cyanide source, see:
For selected papers on the cyanation of arene C–H bonds through C–H activation, see:
For representative papers on the use of RCN as cyanide sources for addition with alkynes using Ni/AlMe3, see: