Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2012; 23(19): 2840-2844
DOI: 10.1055/s-0032-1317484
DOI: 10.1055/s-0032-1317484
letter
A Concise Total Synthesis of 2-epi-(–)-Pachastrissamine via a Three-Component Tandem Cross-Metathesis–Intramolecular SN2′ Substitution–Cross-Metathesis Sequence
Further Information
Publication History
Received: 13 August 2012
Accepted after revision: 25 September 2012
Publication Date:
23 October 2012 (online)
Abstract
A highly concise and efficient total synthesis of 2-epi-(–)-pachastrissamine is described utilizing a three-component tandem cross-metathesis–intramolecular SN2′ substitution–cross-metathesis from the readily available alcohol (+)-8, wherein the substituted tetrahydrofuran formation and alkyl-chain extension are both accomplished in a one-pot manner. This route allows for direct access to pachastrissamines and their synthetic analogues at C(2).
Key words
total synthesis - tandem reaction - stereoselective synthesis - natural products - 2-epi-pachastrissamineSupporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References and Notes
- 1a Bunce RA. Tetrahedron 1995; 51: 13103
- 1b Nicolaou KC, Montagnon T, Snyder SA. Chem. Commun. 2003; 551
- 1c Lee JM, Na Y, Han H, Chang S. Chem. Soc. Rev. 2004; 33: 302
- 1d Padwa A. Pure Appl. Chem. 2004; 76: 1933
- 1e Ajamian A, Gleason JL. Angew. Chem. Int. Ed. 2004; 43: 3754
- 1f Fogg DE, dos Santos EN. Coord. Chem. Rev. 2004; 248: 2365
- 1g De Meijere A, von Zezschwitz P, Bräse S. Acc. Chem. Res. 2005; 38: 413
- 1h Wasilke J.-C, Obrey SJ, Baker RT, Bazan GC. Chem. Rev. 2005; 105: 1001
- 2a Louie J, Bielawski CW, Grubbs RH. J. Am. Chem. Soc. 2001; 123: 11312
- 2b Lee H.-Y, Kim HY, Tae H, Kim BG, Lee J. Org. Lett. 2003; 5: 3439
- 2c Seigal BA, Fajardo C, Snapper ML. J. Am. Chem. Soc. 2005; 127: 16329
- 2d Beligny S, Eibauer S, Maechling S, Blechert S. Angew. Chem. Int. Ed. 2006; 45: 1900
- 3a Kuroda I, Musman M, Ohtani I, Ichiba T, Tanaka J, Gravlos DG, Higa T. J. Nat. Prod. 2002; 65: 1505
- 3b Ledroit V, Debitus C, Lavaud C, Massiot G. Tetrahedron Lett. 2003; 44: 225
- 4a Sudhakar N, Kumar AR, Prabhakar A, Jagadeesh B, Rao BV. Tetrahedron Lett. 2005; 46: 325
- 4b van den Berg R, Boltje T, Verhagen C, Litjens R, Vander Marel G, Overkleeft H. J. Org. Chem. 2006; 71: 836
- 4c Du Y, Liu J, Linhardt RJ. J. Org. Chem. 2006; 71: 1251
- 4d Liu J, Du Y, Dong X, Meng S, Xiao J, Cheng L. Carbohydr. Res. 2006; 341: 2653
- 4e Ribes C, Falomir E, Carda M, Marco JA. Tetrahedron 2006; 62: 5421
- 4f Lee T, Lee S, Kwak YS, Kim D, Kim S. Org. Lett. 2007; 9: 429
- 4g Reddy LV. R, Reddy PV, Shaw AK. Tetrahedron: Asymmetry 2007; 18: 542
- 4h Ramana CV, Giri AG, Suryawanshi SB, Gonnade RG. Tetrahedron Lett. 2007; 48: 265
- 4i Prasad KR, Chandrakumar A. J. Org. Chem. 2007; 72: 6312
- 4j Abraham E, Candela-Lena JI, Davies SG, Georgiou M, Nicholson RL, Roberts PM, Russell AJ, Sánchez-Fernández EM, Smith AD, Thomson JE. Tetrahedron: Asymmetry 2007; 18: 2510
- 4k Yakura T, Sato S, Yoshimoto Y. Chem. Pharm. Bull. 2007; 55: 1284
- 4l Abraham E, Brock EA, Candela-Lena JI, Davies SG, Georgiou M, Nicholson RL, Perkins JH, Roberts PM, Russell AJ, Sánchez-Fernández EM, Scott PM, Smith AD, Thomson JE. Org. Biomol. Chem. 2008; 6: 1665
- 4m Passiniemi M, Koskinen AM. P. Tetrahedron Lett. 2008; 49: 980
- 4n Venkatesan K, Srinivasan KV. Tetrahedron: Asymmetry 2008; 19: 209
- 4o Enders D, Terteryan V, Palecek J. Synthesis 2008; 2278
- 4p Ichikawa Y, Matsunaga K, Masuda T, Kotsuki H, Nakano K. Tetrahedron 2008; 64: 11313
- 4q Canals D, Mormeneo D, Fabrias G, Llebaria A, Casas J, Delgado A. Bioorg. Med. Chem. 2009; 17: 235
- 4r Inuki S, Yoshimitsu Y, Oishi S, Fujii N, Ohno H. Org. Lett. 2009; 11: 4478
- 4s Jayachitra G, Sudhakar N, Anchoori RK, Rao BV, Roy S, Banerjee R. Synthesis 2010; 115
- 4t Chattopadhyay A. Tetrahedron: Asymmetry 2010; 21: 1983
- 4u Inuki S, Yoshimitsu Y, Oishi S, Fujii N, Ohno H. J. Org Chem. 2010; 75: 3831
- 4v Yoshimitsu Y, Inuki S, Oishi S, Fujii N, Ohno H. J. Org. Chem. 2010; 75: 3843
- 4w Urano H, Enomoto M, Kuwahara S. Biosci., Biotechnol., Biochem. 2010; 74: 152
- 4x Passiniemi M, Koskinen AM. P. Org. Biomol. Chem. 2011; 9: 1774
- 4y Llaveria J, Diáz Y, Matheu MI, Castillón S. Eur. J. Org. Chem. 2011; 1514
- 4z Sriniavas RaoG, Venkateswara Rao B. Tetrahedron Lett. 2011; 52: 6076
- 5a Prasad KR, Penchalaiah K. Tetrahedron: Asymmetry 2011; 22: 1400
- 5b Lee H.-J, Lim C.-M, Hwang S.-H, Jeong B.-S, Kim S. Chem.–Asian J. 2011; 6: 1943
- 5c Cruz-Gregorio S, Espinoza-Rojas C, Quintero L, Sartillo-Piscil F. Tetrahedron Lett. 2011; 52: 6370
- 5d Zhao M.-L, Zhang E, Gao J, Zhang Z, Zhao Y.-T, Qu W, Liu H.-M. Carbohydr. Res. 2012; 351: 126
- 6a Rives A, Ladeira S, Levade T, Andrieu-Abadie N, Génisson Y. J. Org. Chem. 2010; 75: 7920
- 6b Jeon H, Bae H, Baek DJ, Kwak YS, Kim D, Kim S. Org. Biomol. Chem. 2011; 9: 7234
- 7a Génnison Y, Lamandé L, Salma Y, Andrieu-Abadie N, André C, Baltas M. Tetrahedron: Asymmetry 2007; 18: 857
- 7b Salma Y, Ballereau S, Maaliki C, Ladeira S, Andrieu-Abadie N, Génnison Y. Org. Biomol. Chem. 2010; 8: 3227
- 7c Salma Y, Balllereau S, Ladeira S, Lepetit C, Chauvin R, Andrieu-Abadie N, Génnison Y. Tetrahedron 2011; 67: 4253
- 8a Wolfe JP, Hay MB. Tetrahedron 2007; 63: 261
- 8b Jalce G, Franck X, Figadère B. Tetrahedron: Asymmetry 2009; 20: 2537
- 9a Ibuka T, Nakai K, Habashita H, Hotta Y, Fujii N, Mimura N, Miwa Y, Taga T, Yamamoto Y. Angew. Chem., Int. Ed. Engl. 1994; 33: 652
- 9b Ibuka T, Suzuki K, Habashita H, Otaka A, Tamamura H, Mimura N, Miwa Y, Taga T, Fujii N. J. Chem. Soc., Chem. Commun. 1994; 2151
- 10a Connon SJ, Blechert S. Angew. Chem. Int. Ed. 2003; 42: 1900
- 10b Prunet J. Curr. Top. Med. Chem. 2005; 5: 1559
- 10c Nolan SP, Clavier H. Chem. Soc. Rev. 2010; 39: 3305
- 11 For a review on the intramolecular SN2′ reaction, see: Paquette LA, Stirling CJ. M. Tetrahedron 1992; 48: 7383
- 12a Kim H, Baker JB, Lee S.-U, Park Y, Bolduc KL, Park H.-B, Dickens MG, Lee D.-S, Kim Y, Kim SH, Hong J. J. Am. Chem. Soc. 2009; 131: 3192
- 12b Lee K, Kim H, Hong J. Org. Lett. 2009; 11: 5202
- 12c Kim H, Baker JB, Park Y, Park H.-B, DeArmond PD, Kim SH, Fitzgerald MC, Lee D.-S, Hong J. Chem.–Asian. J. 2010; 5: 1902
- 13a Scholl M, Ding S, Lee CW, Grubbs RH. Org. Lett. 1999; 1: 953
- 13b Chatterjee AK, Grubbs RH. Org. Lett. 1999; 1: 1751
- 13c Chatterjee AK, Sanders DP, Grubbs RH. Org. Lett. 2002; 4: 1939
- 13d Chatterjee AK, Grubbs RH. Angew. Chem. Int. Ed. 2002; 41: 3171
- 13e Chatterjee AK, Choi TL, Sanders DP, Grubbs RH. J. Am. Chem. Soc. 2003; 125: 11360
- 14 The diastereomers (–)-7a and (–)-7b are readily separable by silica gel column chromatography.
- 15 Experimental procedures for the synthesis of all new compounds can be found in the Supporting Information.
- 16a Johnson F. Chem. Rev. 1968; 68: 375
- 16b Bartlett PA. Tetrahedron 1980; 36: 2
- 16c Paddon-Row MN, Rondan NG, Houk KN. J. Am. Chem. Soc. 1985; 104: 7162
- 16d Hoffmann RW. Chem. Rev. 1989; 89: 1841
- 16e Hoffmann RW. Angew. Chem., Int. Ed. Engl. 1992; 31: 1124
- 17 The spectral data of this penultimate intermediate (–)-5 proved identical in all respects to the data previously reported by Kim and co-workers6b with the opposite optical rotation value.
- 18 Spectral Data for 2-epi-(–)-Pachastrissamine (2) [α]D 25 –9.6 (c 0.2, MeOH). 1H NMR (500 MHz, CDCl3): δ = 4.13 (dd, J = 8.9, 6.5 Hz, 1 H), 3.58–3.63 (m, 2 H), 3.47–3.48 (m, 1 H), 3.40 (dd, J = 8.8, 6.9 Hz, 1 H), 1.25–1.73 (m, 29 H), 0.88 (t, J = 6.8 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 85.2, 74.8, 73.2, 52.6, 33.7, 31.9, 29.68, 29.66, 29.65, 29.59, 29.55, 29.4, 25.9, 22.7, 14.1. IR (neat): 3341, 3282, 3073, 2954, 2921, 2850, 1470, 1036, 759 cm–1. HRMS (CI): m/z calcd for C19H38NO2: 300.2903; found: 300.2900 [M + H]+.
- 19 Jo SY, Kim HC, Jeon DJ, Kim HR. Heterocycles 2001; 55: 1127
For reviews on tandem reactions, see:
For representative examples of tandem reactions utilizing ruthenium alkylidene complexes, see:
For syntheses of pachastrissamine, see:
For recent reviews of the construction of tetrahydrofuran ring systems, see:
The known alcohol (+)-8 was prepared conventionally in multigram quantities from the commercially available d-serine methyl ester hydrochloride in eight steps employing a procedure similar to the following literatures, see:
For recent reviews of olefin cross-metathesis, see: