Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2012; 23(19): 2789-2794
DOI: 10.1055/s-0032-1317521
DOI: 10.1055/s-0032-1317521
letter
Significantly Fast Synthesis of S-Glycosyl N-Substituted Dithiocarbamate and S-Glycosyl S′-Substituted Trithiocarbonate Derivatives under Solvent-Free Conditions
Further Information
Publication History
Received: 17 August 2012
Accepted after revision: 08 October 2012
Publication Date:
13 November 2012 (online)
Abstract
A series of S-glycosyl N-substituted dithiocarbamate and S-glycosyl S′-substituted trithiocarbonate derivatives have been synthesized under solvent-free conditions. Three-component reaction of glycosyl bromides with carbon disulfide and thiols or amines in the presence or absence of triethylamine furnished excellent yields of the target compounds in a short reaction time.
-
References and Notes
- 1a Ranise A, Spallarossa A, Schenone S, Burno O, Bondavalli F, Vargiu L, Marceddu T, Mura M, Colla PL, Pani A. J. Med. Chem. 2003; 46: 768
- 1b Cao SL, Feng YP, Jiang YY, Liu SY, Ding GY, Li RT. Bioorg. Med. Chem. Lett. 2005; 15: 1915
- 1c Chen D, Cui QC, Yang H, Dou QP. Cancer Res. 2006; 66: 10425
- 2a Len C, Postal D, Ronco G, Villa P, Goubert C, Jeufrault E, Mathon B, Simon H. J. Agric. Food Chem. 1997; 45: 3
- 2b Soloneski S, Gonzalez M, Piaggio E, Apezteguia M, Reigosa AA, Larramendy ML. Mutagenesis 2001; 16: 487
- 3a Greene TW, Wuts PG. M. Protecting Groups in Organic Synthesis . 3rd ed. Wiley Interscience; New York: 1999: 484
- 3b Barton DH. R. Tetrahedron 1992; 48: 2529
- 3c Crich D, Quintero L. Chem. Rev. 1989; 89: 1413
- 3d Yu T, Yamada T, Weiss RG. Chem. Mater. 2010; 22: 5492
- 3e Mukherjee AK, Ashare A. Chem. Rev. 1991; 91: 1
- 4a Burke JT. R, Bajwa BS, Jacobsen AE, Rice KC, Streaty RA, Klee WA. J. Med. Chem. 1984; 27: 1570
- 4b Walter W, Bode KD. Angew. Chem., Int. Ed. Engl. 1967; 6: 281
- 5 Chaturvedi D, Ray S. Tetrahedron Lett. 2006; 47: 1307
- 6 Ranu BC, Saha A, Banerjee S. Eur. J. Org. Chem. 2008; 519
- 7a Bhadra S, Saha A, Ranu BC. Green Chem. 2008; 10: 1224
- 7b Azizi N, Aryanasab F, Torkiyan L, Ziyaei A, Saidi MR. J. Org. Chem. 2006; 71: 3634
- 7c Azizi N, Aryanasab F, Tourkian L, Saidi MR. Synth. Commun. 2011; 41: 94
- 8a Azizi N, Aryanasab F, Saidi MR. Org. Lett. 2006; 8: 5275
- 8b Azizi N, Ebrahimi F, Aakbari E, Aryanasab F, Saidi MR. Synlett 2007; 2797
- 8c Azizi N, Pourhasan B, Aryanasab F, Saidi MR. Synlett 2007; 1239
- 8d Bardajee GR, Afsari HS, Sadraei S, Taimoory S. Phosphorus, Sulfur Silicon Relat. Elem. 2012; 187: 871
- 8e Bardajee GR, Sadraei S, Taimoory S, Abtin E. Asian J. Biochem. Pharm. Res. 2011; 1: 178
- 8f Chaturvedi D, Mishra N, Mishra V. J. Sulfur Chem. 2007; 28: 607
- 9a Metzner P. Pure Appl. Chem. 1996; 68: 863
- 9b Quiclet-Sire B, Zard SZ. Top. Curr. Chem. 2006; 252: 201
- 9c Martin DJ, Greco CC. J. Org. Chem. 1968; 33: 1275
- 9d Jordis U, Rudolf M. Phosphorus Sulfur Relat. Elem. 1984; 19: 279
- 9e Corey EJ, Carey FA, Winter RA. E. J. Am. Chem. Soc. 1965; 87: 934
- 9f Leriverend C, Metzner P, Capperucci A, Degl’lnnocenti A. Tetrahedron 1997; 53: 1323
- 10a Johnson DJ, Amarnath V, Amarnath K, Valentine H, Valentine WM. Toxicol. Sci. 2003; 76: 65
- 10b Godt HC, Wann RE. J. Org. Chem. 1961; 26: 4047
- 10c Burkhardt C, Dehmel F, Weinbrenner S, Julius H, Ciossek T, Maier T, Stengel T, Fettis K, Wieland H, Beckers T. J. Med. Chem. 2008; 51: 3985
- 10d Wegener D, Wirsching F, Riester D, Schwienhorst A. Chem. Biol. 2003; 10: 61
- 10e Dehmel F, Weinbrenner S, Julius H, Ciossek T, Maier T, Stengel T, Fettis K, Burkhardt C, Wieland H, Beckers T. J. Med. Chem. 2008; 51: 3985
- 11a Anand ON, Kumar V, Singh AK, Bist RP. S. Lubrication Sci. 2007; 19: 159
-
11b El-khateeb M, Roller A. Polyhedron 2007; 26: 3920
- 11c Efrima S, Pradhan N. C. R. Chim. 2003; 6: 1035
- 12a Duus F In Comprehensive Organic Chemistry . Vol. 3. Barton D, Ollis WD. Pergamon; New York: 1979: 432
- 12b Goldt HC, Wanns AE. J. Org. Chem. 1961; 26: 4047
- 13 Wood MR, Duncalf DJ, Rannard SP, Perrier S. Org. Lett. 2006; 8: 553
- 14a Degani I, Fochi R, Gatti A, Regondi V. Synthesis 1986; 894
- 14b Aoyagi N, Ochiai B, Mori H, Endo T. Synlett 2006; 636
- 15 Chaturvedi D, Chaturvedi AK, Mishra N, Mishra V. Tetrahedron Lett. 2008; 49: 4886
- 16a Horita Y, Takii T, Kuroishi R, Chiba T, Ogawa K, Kremer L, Sato Y, Lee YS, Hasegawa T, Onozaki K. Bioorg. Med. Chem. Lett. 2011; 21: 899
- 16b Horita Y, Takii T, Chiba T, Kuroishi R, Maeda Y, Kurono Y, Inagaki E, Nishimura K, Yamamoto Y, Abe C, Mori M, Onozaki K. Bioorg. Med. Chem. Lett. 2009; 19: 6313
- 16c Tejima S, Ishiguro S. Chem. Pharm. Bull. 1967; 15: 255
- 16d Szeja W, Bogusiak J. Synthesis 1988; 224
- 16e Gabhe BS, Deshmukh SP. Int. J. Chem. Sci. 2010; 8: 2083
- 16f Ishiguru S, Tejima S. Chem. Pharm. Bull. 1967; 15: 1478
- 16g Fügedi P, Garegg PJ, Oscarson S, Rosen G, Silwanis BA. Carbohydr. Res. 1991; 211: 157
- 16h Padungros P, Alberch L, Wei A. Org. Lett. 2012; 14: 3380
- 16i Mangte DV, Deshmukh SP, Bhokare DD, Deshpande AR. Ind. J. Pharm. Sci. 2007; 69: 295
- 16j Bhagat SK, Fokmare AK, Deshmukh SP. Orient. J. Chem. 2001; 17: 437
- 16k Mangte DV, Deshmukh SP. Int. J. Chem. Sci. 2004; 2: 159
- 16l Mannerstedt K, Ekelof K, Oscarson S. Carbohydr. Res. 2007; 342: 631
- 16m Lichtenthaler FW, Klares U, Lergenmuller M, Schwidetzky S. Synthesis 1992; 179
- 16n Li R.-T, Ding P.-Y, Han M, Cai M.-S. Synth. Commun. 1998; 28: 295
- 16o Bogusiak J, Szeja W. Polish J. Chem. 1993; 67: 2181
- 16p Lee BH, Bertram B, Schmezer P, Frank N, Wiessler M. J. Med. Chem. 1994; 37: 3154
- 16q Wei A. US 20080124776 A1 20080529, 2008
- 17a Doane WM. Methods Carbohydr. Chem. 1972; 6: 413
- 17b Narendra N, Lalithamba HS, Sureshbabu VV. Tetrahedron Lett. 2010; 51: 6169
- 17c Zhou Y, Beck W. J. Organomet. Chem. 1994; 479: 217
- 18 General Experimental Conditions for the Synthesis of S-Glycosyl N-Substituted Dithiocarbamate Derivatives A mixture of amine (1.2 mmol), CS2 (1.5 mmol) was allowed to stir for 5 min at r.t. To the reaction mixture was added glycosyl bromide (1.0 mmol), and the reaction mixture was allowed to stir at r.t. for the appropriate time as mentioned in Table 1. Excess reagents were removed under reduced pressure. H2O was added to the crude product, and the mixture was stirred at r.t. The solid product, which precipitated out immediately, was filtered, washed with H2O dried, and recrystallized from EtOH. Representative spectroscopic data of selected products are as follows. 2,3,4,6-Tetra-O-acetyl-β-d-glucopyranosyl 4-Morpholine Carbodithioate (5) White solid; mp 132–133 °C; [α]D +26.3 (c 0.5, CHCl3). IR (KBr): 2966, 1747, 1469, 1426, 1377, 1219, 1112, 1057, 1030, 996, 922, 825, 610 cm–1. 1H NMR (500 MHz, CDCl3): δ = 5.86 (d, J = 10.5 Hz, 1 H, H-1), 5.34 (t, J = 9.5 Hz, 1 H, H-2), 5.29 (t, J = 9.5 Hz, 1 H, H-3), 5.11 (t, J = 10.0 Hz, 1 H, H-4), 4.28 (dd, J = 13.0, 5.0 Hz, 1 H, H-6a), 4.12 (dd, 12,5, 2.0 Hz, 1 H, H-6b), 3.89–3,85 (m, 1 H, H-5), 3.80–3.70 (m, 4 H, CH2), 2.07, 2.04, 2.03, 2.01 (4 s, 12 H, 4 COCH3). 13C NMR (125 MHz, CDCl3): δ = 192.4 (C=S), 170.4, 169.8, 169.4, 169.3 (4 COCH3), 86.7 (C-1), 76.3 (C-5), 74.3 (C-3), 68.5 (C-4), 68.0 (C-2), 66.2 (CH2), 65.9 (CH2), 61.6 (C-6), 51.6 (CH2), 50.7 (CH2), 20.8, 20.7, 20.6 (2 C, 4 COCH3). ESI-MS: m/z = 516.1 [M + Na]+. Anal. Calcd for C19H27NO10S2 (493.10): C, 46.24; H, 5.51. Found: C, 46.10; H, 5.70. (2,3,4,6-Tetra-O-acetyl-β-d-glucopyranosyl)-N-cyclopropylmethyl-N-propyl Dithiocarbamate (6) White solid; mp 78–80 °C. [α]D +12.5 (c 0.5, CHCl3). IR (KBr): 2940, 1747, 1478, 1382, 1243, 1222, 1079, 1036, 913, 830, 606 cm–1. 1H NMR (500 MHz, CDCl3): δ = 5.87 (d, J = 10.0 Hz, 1 H, H-1), 5.35 (t, J = 9.0 Hz, 1 H, H-3), 5.27 (t, J = 9.5 Hz, 1 H, H-2), 5.11 (t, J = 9.0 Hz, 1 H, H-4), 4.29 (dd, J = 12.5, 4.5 Hz, 1 H, H-6a), 4.12 (d, J = 12.0 Hz, 1 H, H-6b), 4.03–3.96 (m, 1 H), 3.92–3.87 (m, 2 H, H-5, CH2), 3.86–3.72 (m, 1 H), 3.65–3.51 (m, 2 H), 2.07, 2.03, 2.01, (3 s, 12 H, 4 COCH3), 1.80–1.65 (m, 2 H), 1.35–1.25 (m, 1 H), 0.98–0.90 (m, 3 H), 0.63–0.57 (m, 2 H), 0.35–0.32 (m, 2 H). 13C NMR (125 MHz, CDCl3): δ = 192.0 (C=S), 170.5, 169.8, 169.3, (2 C, 4 COCH3), 87.2 (C-1), 76.2 (C-5), 74.5 (C-3), 68.6 (C-4), 68.1 (C-2), 61.6 (C-6), 59.4 (CH2), 57.0 (CH2), 19.3 (CH2), 20.8, 20.7, 20.6, 20.5 (4 COCH3), 11.3 (CH3), 8.9 (CH), 4.3, 4.0 (CH2). ESI-MS: m/z = 542.1 [M + Na]+. Anal. Calcd for C22H33NO9S2 (519.16): C, 50.85; H, 6.40. Found: C, 50.70; H, 6.60.
- 19 General Experimental Conditions for the Synthesis of S-Glycosyl S′-Substituted Trithiocarbonate Derivative To a mixture of thiol (1.2 mmol), CS2 (1.5 mmol) and glycosyl bromide (1.0 mmol) was added Et3N (0.1 mmol), and the reaction mixture was allowed to stir at r.t. for the appropriate time as mentioned in Table 2. Excess reagents were removed under reduced pressure. H2O was added to the crude product, and the mixture was stirred at r.t. The solid product which precipitated out immediately was filtered, washed with H2O, dried, and recrystallized from EtOH. Representative spectroscopic data of selected products are as follows. S-(2,3,4,6-Tetra-O-acetyl-β-d-glucopyranosyl)-S′-(p-methylphenyl) Trithiocarbonate (16) White solid; mp 107–108 °C. [α]D –17.2 (c 0.5, CHCl3). IR (KBr): 2939, 1747, 1382, 1224, 1039, 918, 809, 604 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.37 (d, J = 9.0 Hz, 2 H, ArH), 7.08 (d, J = 9.0 Hz, 2 H, ArH), 5.16 (t, J = 9.5 Hz, 1 H, H-3), 4.98 (t, J = 9.5 Hz, 1 H, H-2), 4.89 (t, J = 9.5 Hz, 1 H, H-4), 4.60 (d, J = 10.0 Hz, 1 H, H-1), 4.21–4.13 (m, 2 H, H-6ab), 3.68–3.64 (m, 1 H, H-5), 2.34 (s, 3 H, CH3), 2.09, 2.07, 2.02, 1.99 (4 s, 12 H, 4 COCH3). 13C NMR (125 MHz, CDCl3): δ = 194.7 (C=S), 170.3, 170.0, 169.2, 169.0 (4 COCH3), 138.7–127.4 (ArC), 85.7 (C-1), 75.8 (C-5), 74.0 (C-3), 69.9 (C-2), 68.1 (C-4), 62.0 (C-6), 21.2 (CH3), 20.7, 20.6 (2 C), 20.5 (4 COCH3). ESI-MS: m/z = 553.0 [M + Na]+. Anal. Calcd for C22H26O9S3 (530.07): C, 49.80; H, 4.94. Found: C, 49.64; H, 5.14. S-(2,3,4,6-Tetra-O-acetyl-β-d-glucopyranosyl)-S′-(p-methoxylphenyl) Trithiocarbonate (17) White solid; mp 88–90 °C. [α]D –20.4 (c 0.5, CHCl3). IR (KBr): 2940, 1747, 1494, 1383, 1226, 1038, 831 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.45 (d, J = 9.0 Hz, 2 H, ArH), 6.84 (d, J = 9.0 Hz, 2 H, ArH), 5.19 (t, J = 9.5 Hz, 1 H, H-3), 4.99 (t, J = 9.5 Hz, 1 H, H-2), 4.88 (t, J = 9.5 Hz, 1 H, H-3), 4.56 (d, J = 10.0 Hz, 1 H, H-1), 4.22–4.16 (m, 2 H, H-6ab), 3.81 (s, 3 H, OCH3), 3.69–3.66 (m, 1 H, H-5), 2.10, 2.07, 2.01, 1.98 (4 s, 12 H, 4 COCH3). 13C NMR (125 MHz, CDCl3): δ = 195.3 (C=S), 170.6, 170.2, 169.4, 169.2 (4 COCH3), 160.4–114.4 (ArC), 85.6 (C-1), 75.7 (C-5), 74.0 (C-3), 69.9 (C-2), 68.1 (C-4), 62.0 (C-6), 55.3 (OCH3), 20.8, 20.7, 20.6, 20.5 (4 COCH3). ESI-MS: m/z = 569.0 [M + Na]+. Anal. Calcd for C22H26O10S3 (546.06): C, 48.34; H, 4.79. Found: C, 48.17; H, 4.95.