RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2012; 23(20): 2951-2956
DOI: 10.1055/s-0032-1317622
DOI: 10.1055/s-0032-1317622
letter
Synthesis of Nuevamine Aza-Analogues by a Sequence: I-MCR–Aza-Diels–Alder–Pictet–Spengler
Weitere Informationen
Publikationsverlauf
Received: 03. September 2012
Accepted after revision: 24. Oktober 2012
Publikationsdatum:
23. November 2012 (online)
Abstract
A series of nuevamine aza-analogues were prepared in moderate to good yields in two reaction steps. The synthetic strategy involves an isonitrile-based multicomponent reaction, including an aza-Diels–Alder cycloaddition and Pictet–Spengler reaction as postcondensation.
-
References and Notes
- 1a Mertens A, Zilch H, Koenig B, Schaefer W, Poll T, Kampe W, Seidel H, Leser U, Leinert H. J. Med. Chem. 1993; 36: 2526
- 1b Schaefer W, Friebe WG, Leinert H, Mertens A, Poll T, Von der Saal W, Zilch H, Nuber B, Ziegler ML. J. Med. Chem. 1993; 36: 726
- 1c Dictionary of Alkaloids . Buckingham J, Baggaley KH, Roberts AD, Szabó LF. CRC Press; Chicago: 2010
- 1d Bentley KW. The Isoquinoline Alkaloids . Harwood Academic Publishers; Amsterdam: 1998
- 2a Valencia E, Freyer AJ, Shamma M, Fajardo V. Tetrahedron Lett. 1984; 25: 599
- 2b Alonso R, Castedo L, Dominguez D. Tetrahedron Lett. 1985; 26: 2925
- 3a Hitchings GJ, Helliwell M, Vernon JM. J. Chem. Soc., Perkin Trans. 1 1990; 83
- 3b Hitchings GJ, Vernon JM. J. Chem. Soc., Perkin Trans. 1 1990; 1757
- 3c Collado MI, Manteca I, Sotomayor N, Villa M.-J, Lete E. J. Org. Chem. 1997; 62: 2080
- 3d Moniot JL, Hindenlang DM, Shamma M. J. Org. Chem. 1979; 44: 4347
- 3e Heaney H, Shuhaibar KF. Synlett 1995; 47
- 3f El Gihani MT, Heaney H, Shuhaibar KF. Synlett 1996; 871
- 3g Heaney H, Simcox MT, Slawin AM. Z, Giles RG. Synlett 1998; 640
- 3h Allin SM, Northfield CJ, Page MI, Slawin AM. Z. Tetrahedron Lett. 1998; 39: 4905
- 3i Koseki Y, Kusano S, Sakata H, Nagasaka T. Tetrahedron Lett. 1999; 40: 2169
- 3j Katritzky AR, Mehta S, He HY. J. Org. Chem. 2001; 66: 148
- 3k Osante I, Lete E, Sotomayor N. Tetrahedron Lett. 2004; 45: 1253
- 3l Moreau A, Couture A, Deniau E, Grandclaudon P, Lebrun S. Tetrahedron 2004; 60: 6169
- 4 Selvakumar J, Ramanathan RC. Org. Biomol. Chem. 2011; 9: 7643 ; and references cited therein
- 5a Kürti L, Czakó B. Strategic Applications of Named Reactions in Organic Synthesis. Elsevier; Amsterdam: 2005: 196
- 5b Burns B, Grigg R, Santhakumar V, Sridharan V, Stevenson P, Worakun T. Tetrahedron 1992; 48: 7297
- 5c Bombrun A, Sageot O. Tetrahedron Lett. 1997; 38: 1057
- 5d Grigg R, MacLachlan WS, MacPherson DT, Sridharan V, Suganthan S, Thornton-Pett M, Zhang J. Tetrahedron 2000; 56: 6585
- 6a Bahajaj AA, Vernon JM, Wilson GD. J. Chem. Soc., Perkin Trans. 1 2001; 1446
- 6b Hitchings GJ, Vernon JM. J. Chem. Soc., Perkin Trans. 1 1990; 1757
- 6c Hitchings GJ, Vernon JM. J. Chem. Soc., Chem. Commun. 1988; 623
- 6d Zamudio-Medina A, García-Gonzalez MC, Padilla J, González-Zamora E. Tetrahedron Lett. 2010; 51: 4837
- 7a Marcaccini ST. Post-Condensation Modification of the Passerini and Ugi Reactions in Multicomponent Reactions. Zhu J, Bienaymé H. Wiley-VCH; Weinheim: 2005
- 7b Dömling A. Chem. Rev. 2006; 106: 17
- 8a El Kaim L, Gámez-Montaño R, Grimaud L, Ibarra-Rivera T. Chem. Commun. 2008; 11: 1350
- 8b Gámez-Montaño R, Ibarra-Rivera T, El Kaim L, Miranda LD. Synthesis 2010; 1285
- 9 Islas-Jácome A, González-Zamora E, Gámez-Montaño R. Tetrahedron Lett. 2011; 52: 5245
- 10 Procedure for the Synthesis of Pyrrolo[3,4-b]pyridin-5-ones 11a–d: Selected Compound 6-(3,4-Dimethoxyphenethyl)-2-benzyl-6,7-dihydro-3-morpholino-7-[(phenylthio)methyl]pyrrolo[3,4-b]pyridin-5-one (11a) 3,4-Dimethoxyphenethylamine (0.671 mmol, 1.0 equiv) and 2-thiophenylacetaldehyde (0.603 mmol, 0.9 equiv) were placed in a 10 mL sealed CEM DiscoverTM microwave reaction tube and diluted in 1.0 mL of dry toluene. Then, the mixture was irradiated (MW, 80 °C, 25 W) for 10 min and Sc(OTf)3 (0.0211 mmol, 0.03 equiv) was added. The mixture was irradiated (MW, 80 °C, 25 W) for 10 min, and 2-isocyano-1-morpholino-3-phenylpropan-1-one (0.805 mmol, 1.2 equiv) was added. The mixture was again irradiated (MW, 80 °C, 25 W), this time for 15 min, and maleic anhydride (0.805 mmol, 1.2 equiv) was added. Finally, this reaction mixture was irradiated (MW, 80 °C, 25 W) for 15 min, and the solvent was removed under reduced pressure. The crude was dissolved in CH2Cl2 (5.0 mL) and washed with a concentrated aq solution of NaHCO3 (3 × 25 mL) and with brine (3 × 25 mL). The organic layer was dried with Na2SO4, and the solvent was removed under vacuum. The residue was immediately purified using a silica gel chromatoflash (hexane–EtOAc = 2:1) to afford compound 11a (68%) as a pale yellow powder; mp 58–59 °C; Rf = 0.25 (hexane–EtOAc = 1:1). Spectral Data for Compound 11a 1H NMR (500 MHz, CDCl3): δ = 7.79 (s, 1 H, H-4), 7.25–7.13 (m, 10 H, HAr), 6.76–6.69 (m, 3 H, HAr), 4.51 (m, 1 H, H-7), 4.27 (d, J = 14.2 Hz, 1 H, H-10), 4.19 (d, J = 14.2 Hz, 1 H, H-10), 4.21–4.13 (m, 1 H, H-17), 3.83 (s, 3 H, H-25), 3.83–3.79 (m, 4 H, H-16), 3.78 (s, 3 H, H-26), 3.56 (dd, J = 14.1, 3.8 Hz, 2 H, H-27), 3.25–3.19 (m, 1 H, H-17), 2.96–2.89 (m, 1 H, H-18), 2.88–2.82 (m, 1 H, H-18), 2.82–2.80 (m, 4 H, H-15). 13C NMR (125 MHz, CDCl3): δ = 167.0 (C-5), 161.1 (C-2), 158.3 (C-8), 148.9 (C-23), 147.8 (C-3), 147.6 (C-22), 139.2 (C-11), 135.2 (C-28), 131.0 (C-19), 130.7 (C-12), 128.8 (C-13), 128.8 (C-29), 128.3 (C-30), 126.7 (C-14), 126.2 (C-31), 125.1 (C-9), 123.2 (C-4), 120.5 (C-20), 111.8 (C-21), 111.2 (C-19), 67.1 (C-16), 60.1 (C-7), 55.9 (C-25, C-26), 52.9 (C-15), 41.7 (C-17), 39.8 (C-10), 35.6 (C-27), 34.0 (C-18). FT-IR (film in CH2Cl2): 1691 (C=O) cm–1. HRMS: m/z calcd for C33H31N3O4S: 595.2505; found: 595.2507.
- 11a Janvier P, Sun X, Bienaymé H, Zhu J. J. Am. Chem. Soc. 2002; 124: 2560
- 11b Janvier P, Bienaymé H, Zhu J. Angew. Chem. Int. Ed. 2002; 41: 4291
- 11c Fayol A, Zhu J. Org. Lett. 2005; 7: 239
- 12 Firestone RA, Harris EE, Reuter W. Tetrahedron 1967; 23: 943
- 13 Kato I, Higashimoto M, Tamura O, Ishibashi H. J. Org. Chem. 2003; 68: 7983
- 14a Smith LH. S, Coote SC, Sneddon HF, Procter DJ. Angew. Chem. Int. Ed. 2010; 49: 5832
- 14b Bur SK, Padwa A. Chem. Rev. 2004; 104: 2401
- 15 Ishibashi H, Kawanami H, Ikeda M. J. Chem. Soc., Perkin Trans. 1 1997; 817
- 16 Procedure for the Synthesis of Nuevamine Aza-Analogues 6a–d: Selected Compound 6a To a stirred solution of S-oxide 4a (0.034 mmol, 1.0 equiv) in CH2Cl2 (1.0 mL) at 0 °C, drops of TFAA (0.172 mmol, 5.0 equiv) were added. After stirring at r.t. for 3 h, the solvent was removed under reduced pressure, and the crude was dissolved in CH2Cl2 (1.0 mL), and washed with an aq solution of NaHCO3 (3 × 10 mL) and with brine (3 × 10 mL). The organic layer was dried with Na2SO4, and the solvent was removed under vacuum. The residue was immediately purified using a silica gel chromatoflash (hexane–EtOAc = 1:1) to afford compound 6a (92%) as a pale pink powder; mp 72–74 °C; Rf = 0.15 (hexane–EtOAc = 1:1). Spectral Data for Compound 6a 1H NMR (500 MHz, CDCl3): δ = 7.84 (s, 1 H, H-9), 7.67 (s, 1 H, H-4), 7.27–7.16 (m, 5 H, HAr), 6.55 (s, 1 H, H-1), 4.67–4.63 (m, 1 H, H-6), 4.50 (d, J = 14.5 Hz, 1 H, H-20), 4.32 (d, J = 14.5 Hz, 1 H, H-20), 3.83–3.79 (m, 7 H, H-19, H-25), 3.67 (s, 3 H, H-26), 3.42–3.26 (m, 1 H, H-6), 3.06–2.99 (m, 1 H, H-5), 2.84–2.82 (m, 4 H, H-18), 2.76–2.72 (m, 1 H, H-5), 1.81 (s, 3 H, H-13). 13C NMR (125 MHz, CDCl3): δ = 167.7 (C-8), 163.5 (C-16), 161.0 (C-11), 148.0 (C-3), 147.7 (C-10), 147.5 (C-2), 139.6 (C-21), 129.6 (C-16), 128.9 (C-22), 128.3 (C-23), 126.2 (C-24), 124.6 (C-17), 123.7 (C-9), 123.1 (C-15), 111.2 (C-1), 109.9 (C-4), 67.2 (C-19), 63.1 (C-12), 55.9 (C-25), 55.8 (C-26), 53.0 (C-18), 40.0 (C-20), 34.7 (C-6), 29.0 (C-5), 27.9 (C-13). FT-IR (film in CH2Cl2): 1693 (C=O) cm–1. HRMS: m/z calcd for C33H29N3O4S: 485.2315; found: 485.2314.
- 17a Royer J, Bonin M, Micouin L. Chem. Rev. 2004; 104: 2311
- 17b Chrzanowska M, Rozwadowska MD. Chem. Rev. 2004; 104: 3341
- 17c Kuhakarn C, Panyachariwat N, Ruchirawat S. Tetrahedron Lett. 2007; 48: 8182
- 19 Maryanoff BE, Zhang H.-C, Cohen JH, Turchi IJ, Maryanoff CA. Chem. Rev. 2004; 104: 1431
- 20a Padwa A, Danca DM. Org. Lett. 2002; 4: 715
- 20b Padwa A, Waterson AG. Tetrahedron Lett. 1998; 39: 8585
- 20c Padwa A, Heidelbaugh TM, Kuethe JT, McClure MS, Wang Q. J. Org. Chem. 2002; 67: 5928
- 20d Padwa A, Kappe CO, Reger TS. J. Org. Chem. 1996; 61: 4888
- 21a Tyagi V, Khan S, Bajpai V, Gauniyal HM, Kumar B, Chauhan PM. S. J. Org. Chem. 2012; 77: 1414
- 21b Cano-Herrera Ma.-A, Miranda LD. Chem. Commun. 2011; 47: 10770
- 21c Wang W, Ollio S, Herdtweck E, Dömling A. J. Org. Chem. 2011; 76: 637
- 21d El Kaim L, Gageat M, Gaultier L, Grimaud L. Synlett 2007; 500
- 21e Znabet A, Zonneveld J, Janssen E, De Kanter FJ. J, Helliwell M, Turner NJ, Ruijter E, Orru RV. A. Chem. Commun. 2010; 46: 7706
- 21f Wang W, Herdtweck E, Dömling A. Chem. Commun. 2010; 46: 770
- 21g Cao H, Liu H, Dömling A. Chem.–Eur. J. 2010; 16: 12296
- 21h Liu H, Dömling A. J. Org. Chem. 2009; 74: 6895
- 21i Wang W, Ollio S, Herdtweck E, Dömling A. J. Org. Chem. 2011; 76: 637