Synlett 2012; 23(20): 2927-2930
DOI: 10.1055/s-0032-1317671
letter
© Georg Thieme Verlag Stuttgart · New York

Click Synthesis of 5-Substituted 1H-Tetrazoles from Aldehydes, Hydroxyl­amine, and [bmim]N3 via One-Pot, Three-Component Reaction

Majid M. Heravi*
a   Department of Chemistry, School of Science, Alzahra University, Vanak, Tehran, Iran   Fax: +98(21)88041344   Email: mmh1331@yahoo.com
,
Azadeh Fazeli
a   Department of Chemistry, School of Science, Alzahra University, Vanak, Tehran, Iran   Fax: +98(21)88041344   Email: mmh1331@yahoo.com
,
Hossein A. Oskooie
a   Department of Chemistry, School of Science, Alzahra University, Vanak, Tehran, Iran   Fax: +98(21)88041344   Email: mmh1331@yahoo.com
,
Yahya S. Beheshtiha
a   Department of Chemistry, School of Science, Alzahra University, Vanak, Tehran, Iran   Fax: +98(21)88041344   Email: mmh1331@yahoo.com
,
Hassan Valizadeh
b   Department of Chemistry, Faculty of Sciences, Azarbaijan University of Tarbiat Moallem, Tabriz, Iran
› Author Affiliations
Further Information

Publication History

Received: 13 October 2012

Accepted after revision: 29 October 2012

Publication Date:
23 November 2012 (online)


Abstract

An easy and efficient one-pot, three-component method for the synthesis of 5-substituted 1H-tetrazole derivatives, via the reaction of aldehydes, hydroxylamine, and [bmim]N3, is reported.

 
  • References and Notes

  • 1 Butler RN In Comprehensive Heterocyclic Chemistry . Vol. 4. Katritzky AR, Rees CW, Scriven EF. V. Pergamon; Oxford: 1996: 674
  • 2 Xue H, Gau Y, Twamley B, Shreeve JM. Chem. Mater. 2005; 17: 191
  • 3 Huisgen R, Sauer J, Sturn HJ, Markgraf JH. Chem. Ber. 1960; 93: 2106
  • 4 Koldobskii GL, Ostrovskii VA. Usp. Khim. 1994; 63: 847
  • 5 Singh H, Chawla AS, Kapoor VK, Paul D, Malhotra RK. Prog. Med. Chem. 1980; 17: 151
  • 6 Roh J, Vávrová K, Hrabálek A. Eur. J. Org. Chem. 2012; 6101
  • 7 Demko ZP, Sharpless B. J. Org. Chem. 2001; 66: 7945
  • 8 Aridoss G, Laali KK. Eur. J. Org. Chem. 2011; 6343
  • 9 Rama V, Kanagaraj K, Pitchumani K. J. Org. Chem. 2011; 76: 9090
  • 10 Sreedhar B, Suresh Kumar A, Yada D. Tetrahedron. Lett. 2011; 52: 3565
  • 11 Teimouri A, Najafi Chermahini A. Polyhedron 2011; 30: 2606
  • 12 Najafi Chermahini A, Teimouri A, Moaddeli A. Heteroat. Chem. 2011; 22: 168
  • 13 Patil VS, Nandre KP, Borse AU, Bhosale SV. E. J. Chem. 2012; 9: 1145
  • 14 Gutmann B, Roduit JP, Roberge D, Kappe CO. Angew. Chem. Int. Ed. 2010; 49: 7101
  • 15 Marvi O, Alizadeh A, Zarrahi S. Bull. Korean Chem. Soc. 2011; 32: 4001
  • 16 Cantillo D, Gutmann B, Kappe CO. J. Am. Chem. Soc. 2011; 133: 4465
  • 17 Myznikov LV, Efimova YA, Artamonova TV, Koldobskii GI. Russ. J. Org. Chem. 2011; 47: 728
  • 18 Schmidt B, Meid D, Kieser D. Tetrahedron 2007; 63: 492
  • 19 Patil UB, Kumthekar KR, Nagarkar JM. Tetrahedron Lett. 2012; 53: 3706
  • 20 Armstrong RW, Combs AP, Tempest PA, Brown SD, Keating TA. Acc. Chem. Res. 1996; 29: 123
  • 22 Heravi MM, Moghimi S. Tetrahedron Lett. 2012; 53: 392
  • 23 Aureggi V, Sedelmeier G. Angew. Chem. Int. Ed. 2007; 46: 8440
  • 24 General Procedure for the Synthesis of 5-Substituted 1H-Tetrazoles 4a–g To a mixture of aldehyde (1 mmol) and hydroxylamine (1.2 mmol) in DMF (5 mL) at 120 °C was added [bmim]N3 (1.5 mmol) and Cu(OAc)2 (20 mol%). The mixture was stirred for further 12 h. After completion of the reaction, as indicated by TLC, the reaction mixture was treated with H2O (10 mL) and extracted with EtOAc (2 × 15 mL). The aqueous layer was treated with 3 M HCl and extracted with EtOAc (2 × 15 mL). The organic layers were dried over anhyd Na2SO4 and concentrated to give the 5-substituted 1H-tetrazoles (Table 3). General Procedure for the Synthesis of 1-Butyl-3-methylimidazolium Azide25 Freshly prepared 1-butyl-3-methylimidazolium chloride (20 mmol) and NaN3 (20 mmol) were added into deionized H2O (25 mL), and the mixture was stirred for 24 h at r.t. The solvent was removed under reduced pressure at 50 °C to obtain the crude product containing azide ionic liquid and NaCl, which was washed with MeCN (3 × 10 mL). The remaining MeCN was removed under high vacuum to yield yellow transparent liquid that became more viscous upon extensive drying. Isolated yield was 92%. Analytical Data for [bmim]N3 IR (KBr): ν = 2019, 1636, 1571, 1465, 1337, 1168 cm–1. 1H NMR (400 MHz, CDCl3): δ = 1.15 (3 H, t, CH3), 1.48 (2 H, m, CH2), 1.80 (2 H, m, CH2), 3.85 (3 H, s, NCH3), 4.01 (2 H, t, NCH2), 7.24 (1 H, d, ArH), 7.45 (1 H, d, ArH), 9.21 (1 H, br s, ArH). 13C NMR (100 MHz, CDCl3): δ = 12.30, 19.1, 24.4, 36.4, 38.7, 124.1, 127.0, 142.8. Anal. Calcd (%) for C8H15N5: C, 53.02; H, 8.34; N, 38.64. Found (%): C, 53.12; H, 8.36; N, 38.61. Analytical Data for 5-Phenyl-1H-tetrazole (4a) Mp 213–215 °C. 1H NMR (500 MHz, CDCl3): δ = 7.50 (m, 3 H), 8.10 (m, 2 H), 10 (br s, 1 H). IR (KBr): ν = 683, 725, 785, 1162, 1561, 1607, 1733, 2606, 2852, 2923, 3424 cm–1
  • 25 Valizadeh H, Amiri M, Khalili E. Mol. Diversity 2012; 16: 319
  • 26 Kolb HC, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004