Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2012; 23(20): 2957-2960
DOI: 10.1055/s-0032-1317677
DOI: 10.1055/s-0032-1317677
letter
Enantioselective Hydrosilylation of Aromatic Alkenes Catalyzed by Chiral Bis(oxazolinyl)phenyl–Rhodium Acetate Complexes
Further Information
Publication History
Received: 29 September 2012
Accepted after revision: 30 October 2012
Publication Date:
23 November 2012 (online)
Abstract
Highly efficient and enantioselective hydrosilylation of aromatic alkenes catalyzed by the chiral rhodium acetate complexes with the bis(oxazolinyl)phenyl ligands has been reported that afforded chiral silane derivatives with up to 99% ee.
-
References
- 1a Nishiyama H, Itoh K. Asymmetric Hydrosilylation and Related Reactions, In Catalytic Asymmetric Synthesis . Ojima I. Wiley–VCH; New York: 2000. Chapt. 2, pp 111-143
- 1b Fleming I, Barbero A, Walter D. Chem. Rev. 1997; 97: 2063
- 1c Jones GR, Landais Y. Tetrahedron 1996; 52: 7599
- 1d Marciniec M. Coord. Chem. Rev. 2005; 249: 2374
- 2 Yamamoto K, Hayashi T, Kumada M. J. Am. Chem. Soc. 1971; 93: 5301
- 3a Uozumi Y, Hayashi T. J. Am. Chem. Soc. 1991; 113: 9887
- 3b Uozumi Y, Lee S.-Y, Hayashi T. Tetrahedron Lett. 1992; 33: 7185
- 3c Uozumi Y, Kitayama K, Hayashi T. Tetrahedron: Asymmetry 1993; 4: 2419
- 3d Hayashi T, Ueyama K, Tokunaga N, Yoshida K. J. Am. Chem. Soc. 2003; 125: 11508
- 3e Jensen JF, Svendsen BY, la Cour TV, Pedersen HL, Johannsen M. J. Am. Chem. Soc. 2002; 124: 4588
- 3f Oestreich M, Rendler S. Angew. Chem. Int. Ed. 2005; 44: 1661
- 3g Rendler S, Oestreich M, Butts CP, Lloyd-Jones GC. J. Am. Chem. Soc. 2007; 129: 502
- 3h Han JW, Tokunaga N, Hayashi T. J. Am. Chem. Soc. 2001; 123: 12915
- 3i Yamamoto T, Yamada T, Nagata Y, Suginome M. J. Am. Chem. Soc. 2010; 132: 7899
- 4a Bergens SH, Noheda P, Whelan J, Bosnich B. J. Am. Chem. Soc. 1992; 114: 2121
- 4b Tamao K, Thoma T, Inui N, Nakamura O, Ito Y. Tetrahedron Lett. 1990; 31: 7333
- 4c Tamao K, Nakamura K, Ishii H, Yamaguchi S, Shiro M. J. Am. Chem. Soc. 1996; 118: 12469
- 5a Burgess K, Ohlmeyer MJ. J. Org. Chem. 1988; 53: 5178
- 5b Hayashi T, Matsumoto Y, Ito Y. J. Am. Chem. Soc. 1989; 111: 3426
- 5c Sato M, Miyaura N, Suzuki A. Tetrahedron Lett. 1990; 31: 231
- 5d Schnyder A, Hintermann L, Togni A. Angew. Chem., Int. Ed. Engl. 1995; 34: 931
- 5e Beletskaya I, Pelter A. Tetrahedron 1997; 53: 4957
- 5f Carroll A.-M, O’Sullivan TP, Guiry PJ. Adv. Synth. Catal. 2005; 347: 609
- 6a Onopchenko A, Sabourin ET, Beach DL. J. Org. Chem. 1983; 48: 5101
- 6b Takeuchi R, Yasue H. Organometallics 1996; 15: 2098
- 7 Tsuchiya Y, Uchimura H, Kobayashi K, Nishiyama H. Synlett 2004; 2099
- 8 Kanazawa Y, Tsuchiya Y, Kobayashi K, Shiomi T, Itoh J.-I, Kikuchi M, Yamamoto Y, Nishiyama H. Chem.–Eur. J. 2006; 12: 63
- 9 Tamao K, Ishida N, Tanaka T, Kumada M. Organometallics 1983; 2: 1694
- 10 Doucet H, Fernandez E, Layzell TP, Brown JM. Chem.–Eur. J. 1999; 5: 1320
- 11 Chalk AJ, Harrod JF. J. Am. Chem. Soc. 1965; 87: 16
- 12 Bergens SH, Noheda P, Whelan J, Bosnich B. J. Am. Chem. Soc. 1992; 114: 2128
- 13 For the modified Chalk–Harrod mechanism for a theoretical study on rhodium catalysts, see: Sakaki S, Suminoto M, Fukuhara M, Sugimoto M, Fujimoto H, Matsuzaki S. Organometllics 2002; 21: 3788
- 14a Fueno T, Okuyama T, Deguchi T, Furukawa J. J. Am. Chem. Soc. 1965; 87: 170
- 14b Kurosawa H, Asada N. J. Organomet. Chem. 1981; 217: 259
- 14c Munakata M, Kitagawa S, Kosome S, Asahara A. Inorg. Chem. 1986; 25: 2622
- 14d Ohkita K, Kurosawa H, Hirao T, Keda I. J. Organomet. Chem. 1994; 470: 189
- 14e Brown TJ, Dickens MG, Widenhoefer RA. J. Am. Chem. Soc. 2009; 131: 6350
- 15 For examples of electronic effect in asymmetric Rh catalysts, see ref. 10 and: Kwong FY, Yang G, Mak TC. W, Chan AS. C, Chan KS. J. Org. Chem. 2002; 67: 2769
- 16 Typical Procedure for Hydrosilylation of 4a with (EtO)3SiH (Table 1, Entry 2): To a mixture of the phebox-Rh complex 2a (5.4 mg, 0.010 mmol), 4-phenylstyrene (4a; 180 mg, 1.0 mmol) in toluene (1 mL) was added (EtO)3SiH (3b; 220 μL, 1.2 mmol) at 30 °C and the mixture was stirred for 1 h. After concentration of the reaction mixture, the crude product was purified by silica gel column chromatography with hexane–EtOAc (100:1–50:1) as an eluent to give a mixture of 5a and 6a (342 mg, 0.99 mmol; 5a/6a = 78:22). To the mixture of 5a and 6a (342 mg, 0.99 mmol), KHCO3 (300 mg, 3.0 mmol) and KF (174 mg, 3.0 mmol) in THF (1 mL) and MeOH (1 mL) was added H2O2 (30%, 1 mL) at 0 ºC. After being stirred for 12 h, the reaction was quenched by addition of sat. aq Na2S2O3 (10 mL). The mixture was additionally stirred for 1 h and was extracted with EtOAc (3 × 6 mL). The extract was washed with aq NaCl (10 mL) and was dried over MgSO4. After concentration, the residue was purified by column chromatography on silica gel with hexane–EtOAc (15:1–5:1) as an eluent to give 7a (81.2 mg, 0.41 mmol, 41%). HPLC Analysis :(S)-1-(para-Biphenyl)ethanol (7a): Daicel CHIRALPAK® AD-H; hexane–2-propanol (95:5); flow rate: 0.8 mL/min; λ = 254 nm; t R = 14.8 min (S), t R = 16.0 min (R); 98% ee. (S)-1-(4′-Methylphenyl)ethanol (7b): Daicel CHIRALCEL® OJ-H; hexane–2-propanol (95:5); flow rate: 0.8 mL/min; λ = 254 nm; t R = 12.4 min (major), t R = 14.4 min (minor); 98% ee. (S)-1-(4′-Methoxyphenyl)ethanol (7c): Daicel CHIRALPAK® AS-H; hexane–2-propanol (95:5); flow rate: 0.8 mL/min; λ = 254 nm; t R = 22.1 min (minor), t R = 27.8 min (major); 97% ee. (S)-1-(4′-Chlorophenyl)ethanol (7d): Daicel CHIRALCEL® OB-H; hexane–2-propanol (90:10); flow rate: 1.0 mL/min; λ = 215 nm; t R = 5.2 min (major), t R = 5.7 min (minor); 97% ee. (S)-1-(4′-Bromophenyl)ethanol (7e): Daicel CHIRALCEL® OB-H; hexane–2-propanol (95:5); flow rate: 0.5 mL/min; λ = 254 nm; t R = 15.9 min (major), t R = 18.5 min (minor); 96% ee. (S)-(–)-1-(4′-Trifluoromethylphenyl)ethanol (7f): Daicel CHIRALCEL® OJ-H; hexane–2-propanol (95:5); flow rate: 0.8 mL/min; λ = 254 nm; t R = 8.5 min (major), t R = 9.2 min (minor); 98% ee. Methyl 4-(1-Hydroxyethyl)benzoate (7g): Daicel CHIRALCEL® OB-H; hexane–2-propanol (95:5); flow rate: 0.8 mL/min; λ = 254 nm; t R = 19.5 min (major), t R = 24.0 min (minor); 98% ee. (S)-1-(3′-Methoxyphenyl)ethanol (7h): Daicel CHIRALCEL® OB-H; hexane–2-propanol (95:5); flow rate: 0.8 mL/min; λ = 254 nm; t R = 18.4 min (major), t R = 28.0 min (minor); 98% ee. (S)-1-(3′-Chlorophenyl)ethanol (7i): Daicel CHIRALCEL® OB-H; hexane–2-propanol (95:5); flow rate: 0.8 mL/min; λ = 254 nm; t R = 9.9 min (major), t R = 13.5 min (minor); 98% ee. (S)-1-(2′-Methoxyphenyl)ethanol (6j): Daicel CHIRALCEL® OB-H; hexane–2-propanol (95:5); flow rate: 0.8 mL/min; λ = 254 nm; t R = 10.6 min (major), t R = 18.6 min (minor); 49% ee. (S)-1-(2′-Chlorophenyl)ethanol (6k): Daicel CHIRALCEL® OJ-H; hexane–2-propanol (95:5); flow rate: 0.8 mL/min; λ = 254 nm; t R = 9.7 min (major), t R = 10.3 min (minor); 91% ee. (S)-1-Phenylpropanol (10): Daicel CHIRALCEL® OB-H; hexane–2-propanol (95:5); flow rate: 0.8 mL/min; λ = 254 nm; t R = 7.9 min (major), t R = 9.7 min (minor); 98% ee. (R)-2-Tetralol (12): Daicel CHIRALCEL® OJ-H; hexane–2-propanol (95:5); flow rate: 0.8 mL/min; λ = 254 nm; t R = 12.5 min (major), t R = 13.4 min (minor); 91% ee. (S)-1,2-Dihydroacenaphthylen-1-ol (14): Daicel CHIRALCEL® OB-H; hexane–2-propanol (90:10); flow rate: 1.0 mL/min; λ = 215 nm; t R = 7.2 min (minor), t R = 10.0 min (major); 83% ee.
For reviews, see:
For examples of transition-metal–π-styrene complexes, see: