Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2013; 24(1): 79-84
DOI: 10.1055/s-0032-1317923
DOI: 10.1055/s-0032-1317923
letter
Synthesis of 3,4-Disubsituted Isoxazoles via Enamine [3+2] Cycloaddition
Further Information
Publication History
Received: 05 November 2012
Accepted after revision: 23 November 2012
Publication Date:
10 December 2012 (online)
Abstract
Enamine-triggered [3+2]-cycloaddition reactions of aldehydes and N-hydroximidoyl chlorides in the presence of triethylamine give rise to 3,4-disubstituted isoxazoles upon oxidation of the cycloadduct 3,4,5-trisubstituted 5-(pyrrolidinyl)-4,5-dihydroisoxazoles. This offers a high yielding, regiospecific and metal-free synthetic route for the synthesis of 3,4-disubstituted isoxazoles.
-
References and Notes
- 1 Claisen L, Lowman O. Ber. Dtsch. Chem. Ges. 1888; 21: 1149
- 2 Quilico A, Stagno D’Alcontres G, Grunarger P. Nature 1950; 166: 226
- 3a Kotyatkina AI, Zhabinsky VN, Khripach VA. Russ. Chem. Rev. 2007; 70: 641
- 3b Behrens F, Koehm M, Burkhardt H. Current Opinion in Rheumatology 2011; 23: 282
- 3c Peter-Getzlaff S, Polsfuss S, Poledica M, Hombach M, Giger J, Bottger EC, Zbinden R, Bloemberg GV. J. Clin. Microbiol. 2011; 49: 2924
- 3d Brough PA, Aherne W, Barril X, Borgognoni J, Boxall K, Cansfield JE, Cheung K.-MJ, Collins I, Davies NG. M, Drysdale MJ, Dymock B, Eccles SA, Finch H, Fink A, Hayes A, Howes R, Hubbard RE, James K, Jordan AM, Lockie A, Martins V, Massey A, Matthews TP, McDonald E, Northfield CJ, Pearl LH, Prodromou C, Ray S, Raynaud FI, Roughley SD, Sharp SY, Surgenor A, Walmsley DL, Webb P, Wood M, Workman P, Wright L. J. Med. Chem. 2008; 51: 196
- 3e Chiarino D, Grancini G, Frigeni V, Biasini I, Carenzi A. J. Med. Chem. 1991; 34: 600
- 3f Yamamoto T, Fujita K, Asari S, Chiba A, Kataba Y, Ohsumi K, Ohmuta N, Iida Y, Ijichi C, Iwayama S, Fukuchi N, Shoji M. Bioorg. Med. Chem. Lett. 2007; 17: 3736
- 4a Cicchi S, Cordero FM, Giomi D. Five-Membered Ring Systems with O and N Atoms . In Progress in Heterocyclic Chemistry . 1st ed., Vol. 23. Elsevier; Amsterdam: 2011: 303-327
- 4b Altuğ C, Dürüst Y, Elliott MC. Tetrahedron Lett. 2009; 50: 7392
- 4c Wakefield BI, Wright DJ. Adv. Heterocycl. Chem. . 1979; 25: 147
- 4d Melo TM. V. D. P. E. Curr. Org. Chem. 2005; 9: 925
- 5a Vieira AA, Bryk FR, Conte G, Bortoluzzi AJ, Gallardo H. Tetrahedron Lett. 2009; 50: 905
- 5b Himo F, Lovell T, Hilgraf R, Rostovtsev VV, Noodleman L, Sharpless KB, Fokin VV. J. Am. Chem. Soc. 2005; 127: 210
- 5c Chen S, Ren J, Wang Z. Tetrahedron 2009; 65: 9146
- 5d Mabrour M, Bougrin K, Benhida R, Loupy A, Soufiaoui M. Tetrahedron Lett. 2007; 48: 443
- 5e Xu J, Hamme AII. Synlett 2008; 919
- 5f Minakata S, Okumura S, Nagamachi T, Takeda Y. Org. Lett. 2011; 13: 2966
- 5g Willy B, Rominger F, Müller TJ. J. Synthesis 2008; 293
- 6 Kim HJ, Lee JH, Olmstead MM, Kurth MJ. J. Org. Chem. 1992; 57: 6513
- 7a Grecian S, Fokin VV. Angew. Chem. Int. Ed. 2008; 47: 8285
- 7b Dissanayake AA, Odom AL. Tetrahedron 2012; 68: 807
- 8 Schmitt DC, Lam L, Johnson JS. Org. Lett. 2011; 13: 5136
- 9a Perez C, Janin YL, Adams DR, Monneret C, Grierson DS. J. Chem. Soc., Perkin Trans. 1 1997; 901
- 9b Caramella P, Bianchessi P. Tetrahedron 1970; 26: 5773
- 9c Ballabio M, Destro R, Franzoi L, Gelmi ML, Pocar D, Trimarco P. Chem. Ber. 1987; 120: 1797
- 9d Bujak P, Krompiec S, Malarz J, Krompiec M, Filapek M, Danikiewicz W, Kania M, Gębarowska K, Grudzka I. Tetrahedron 2010; 66: 5972
- 9e de Almeida VM, dos Santos RJ, da Silva Góes AJ, de Lima JG, Correia CR. D, de Faria AR. Tetrahedron Lett. 2009; 50: 684
- 9f Krompiec S, Bujak P, Szczepankiewicz W. Tetrahedron Lett. 2008; 49: 6071
- 9g Brooking P, Crawshaw M, Hird NW, Jones C, MacLachlan WS, Readshaw SA, Wilding SW. Synthesis 1999; 1986
- 9h Kim JN, Ryu EK. Bioorg. Med. Chem. Lett. 1992; 2: 941
- 9i Pocar D, Rossi LM, Trimarco P, Vago L. J. Heterocycl. Chem. 1980; 17: 881
- 9j Caramella P, Coda Corsico A, Corsaro A, Del Monte D, Marinone Albini F. Tetrahedron 1982; 38: 173
- 9k Reddy AR, Goverdhan G, Sampath A, Mukkanti K, Reddy PP, Bandichhor R. Synth. Commun. 2012; 42: 639
- 10a Danence LJ. T, Gao Y, Li M, Huang Y, Wang J. Chem. Eur. J. 2011; 17: 3584
- 10b Wang L, Peng SY, Danence LJ. T, Gao Y, Wang J. Chem. Eur. J. 2012; 18: 6088
- 11 CCDC-876696 (4aa) contains the supplementary crystallographic data for this paper. These data can be ontained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- 12 Synthesis of 4aa–ia; General Procedure: Pyrrolidine 3a (74.5 μL, 0.88 mmol) and Et3N (53.9 μL, 0.4 mmol) was dissolved in CH2Cl2 (4 mL), the mixture was cooled to 0 °C and isovaleraldehyde 2a–i (173.9 μL, 1.6 mmol) was added. Immediately afterwards, N-hydroxybenzimidoyl chloride 1a (62.2 mg, 0.4 mmol) in CH2Cl2 (0.2 mL) was added in five portions in five-minute intervals. After complete addition of N-hydroxybenzimidoyl chloride, the reaction mixture was stirred for a further 10 min at 0 °C, after which, it was allowed to warm to r.t. slowly and stirred for another 1.5 h. The reaction was then stopped and the product was purified by flash column chromatography with silica gel (EtOAc–hexane, 10%) to afford 4aa–ia.
- 13 3-Phenyl-4-isopropyl-5-(pyrrolidin-1-yl)-4,5-dihydroisoxazoles (4aa): Yellow crystals. 1H NMR (300 MHz, CDCl3): δ = 7.75–7.69 (m, 2 H), 7.48–7.41 (m, 3 H), 5.41 (d, J = 2.7 Hz, 1 H), 3.40 (dd, J = 3.5, 2.8 Hz, 1 H), 2.91–2.68 (m, 4 H), 2.22–2.13 (m, 1 H), 1.83–1.78 (m, 4 H), 1.10 (d, J = 6.9 Hz, 3 H), 0.83 (d, J = 6.9 Hz, 3 H); 13C NMR (75 MHz, CDCl3): δ = 157.2, 129.6, 128.8, 126.8, 95.3, 56.2, 46.9, 28.1, 23.8, 20.6, 17.1; HRMS (ESI): m/z [M + H]+ calcd for C16H23N2O: 259.1805; found: 259.1812.
For reviews on drug developments and natural product synthesis involving isoxazoles, see:
For reviews on isoxazole chemistry and its role in synthetic chemistry, see:
For selected examples of 3,5-disubstituted isoxazole synthesis, see:
For other synthetic methods of isoxazolines and isoxazoles, see: