Subscribe to RSS
DOI: 10.1055/s-0032-1317953
Activating Group Recycling: A Fresh Approach to Arene Functionalization
Publication History
Received: 15 November 2012
Accepted after revision: 05 December 2012
Publication Date:
21 December 2012 (online)
Abstract
Arene and alkene functionalizations are commonly employed in the synthesis of many important molecules. These transformations typically require an activating group, such as a halide or pseudohalide, to ensure reliable regioselectivity and reactivity. However, these groups are ultimately expelled from the final product after a single bond-forming event. A more attractive strategy could accomplish the desired reaction and retain the activating group in the final product. This ‘recycling’ tactic would permit additional bond-forming events to occur in the same reaction vessel, resulting in an increase in the complexity of the product and the atom economy of the reaction. This paper highlights recent examples of arene functionalization where an aryl activating group can be retained in the product. Particular emphasis is placed on methods that use the recycled activating group for further transformations, including examples from our lab that produce diverse molecular structures from simple styrenes.
-
References
- 1a Handbook of Organopalladium Chemistry for Organic Synthesis. Negishi E.-I, de Meijere A. Wiley; New York: 2002
- 1b Metal-Catalyzed Cross-Coupling Reactions . 2nd ed. de Meijere A, Diederich F. Wiley-VCH; Weinheim: 2004
- 2a Mkhalid IA, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2010; 110: 890
- 2b Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
- 2c Engle KM, Mei T.-S, Wasa M, Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
- 2d Neufeldt SR, Sanford MS. Acc. Chem. Res. 2012; 45: 936
- 2e Song G, Wang F, Li X. Chem. Soc. Rev. 2012; 41: 3651
- 2f Ackermann L. Chem. Rev. 2011; 111: 1315
- 2g Davies HM. L, Morton D. Chem. Soc. Rev. 2011; 40: 1857
- 2h Wendlandt AE, Suess AM, Stahl SS. Angew. Chem. Int. Ed. 2011; 50: 11062
- 3a Bedford RB, Coles SJ, Hursthouse MB, Limmert ME. Angew. Chem. Int. Ed. 2003; 42: 112
- 3b Ihara H, Suginome M. J. Am. Chem. Soc. 2009; 131: 7502
- 3c Robbins DW, Boebel TA, Hartwig JF. J. Am. Chem. Soc. 2010; 132: 4068
- 3d Dai H.-X, Stepan AF, Plummer MF, Zhang Y.-H, Yu J.-Q. J. Am. Chem. Soc. 2011; 133: 7222
- 3e Huang C, Chattopadhyay B, Grevorgyan V. J. Am. Chem. Soc. 2011; 133: 12406
- 3f Gulevich AV, Melkonyan FS, Sarkar D, Gevorgyan V. J. Am. Chem. Soc. 2012; 134: 5528
- 4 Newman SG, Lautens M. J. Am. Chem. Soc. 2011; 133: 1778
- 5 Grigg R, Sridharan V. J. Organomet. Chem. 1999; 576: 65
- 6a Watson DA, Su M, Teverovskiy G, Zhang Y, Garcia-Fortanet J, Kinzel T, Buchwald SL. Science 2009; 325: 1661
- 6b Shen X, Hyde AM, Buchwald SL. J. Am. Chem. Soc. 2010; 132: 14076
- 6c Roy AH, Hartwig JF. J. Am. Chem. Soc. 2001; 123: 1232
- 6d Roy AH, Hartwig JF. J. Am. Chem. Soc. 2003; 125: 13944
- 6e Roy AH, Hartwig JF. Organometallics 2004; 23: 1533
- 6f Newman SG, Lautens M. J. Am. Chem. Soc. 2010; 132: 11416
- 7 Newman SG, Howell JK, Nicolaus N, Lautens M. J. Am. Chem. Soc. 2011; 133: 14916
- 8 Curran DP, Chang C.-T. Tetrahedron Lett. 1990; 31: 933
- 9 Lan Y, Liu P, Newman SG, Lautens M, Houk KN. Chem. Sci. 2012; 3: 1987
- 10 Petrone DA, Malik HA, Clemenceau A, Lautens M. Org. Lett. 2012; 14: 4806
- 11 Jia X, Petrone DA, Lautens M. Angew. Chem. Int. Ed. 2012; 51: 9870
- 12a Liu H, Li C, Qiu D, Tong X. J. Am. Chem. Soc. 2011; 133: 6187
- 12b Liu H, Chen C, Wang L, Tong X. Org. Lett. 2011; 13: 5072
- 12c Li Y, Liu X, Jiang H, Liu B, Chen Z, Zhou P. Angew. Chem. Int. Ed. 2011; 50: 6341
- 13 Hooper JF, Chaplin AB, González-Rodríguez C, Thompson AL, Weller AS, Willis MC. J. Am. Chem. Soc. 2012; 134: 2906
- 14 Willis MC. Chem. Rev. 2010; 110: 725
- 15 Grigg RD, Van Hoveln R, Schomaker JM. J. Am. Chem. Soc. 2012; 134: 16131
- 16 Grigg RD, Rigoli JW, Van Hoveln R, Neale S, Schomaker JM. Chem. Eur. J. 2012; 18: 9391
- 17a Noh D, Chea H, Ju J, Yun J. Angew. Chem. Int. Ed. 2009; 48: 6062
- 17b Noh D, Yoon SK, Won J, Lee JY, Yun J. Chem. Asian J. 2011; 6: 1967
- 17c Won J, Noh D, Yun J, Lee JY. J. Phys. Chem. A 2010; 114: 12112
- 18 Dang L, Zhao H, Lin Z, Marder TB. Organometallics 2007; 26: 2824
- 19 Sperotto E, van Klink GP. M, van Koten G, de Vries JG. Dalton Trans. 2010; 39: 10338
- 20a Hickman AJ, Sanford MS. Nature (London) 2012; 484: 177
- 20b Ribas X, Casitas A. Ideas in Chemistry and Molecular Sciences: Where Chemistry Meets Life . Pignataro B. Wiley-VCH; Weinheim: 2010: 31-57
- 21a Maiti D, Sarjeant AA. N, Itoh S, Karlin KD. J. Am. Chem. Soc. 2008; 130: 5644
- 21b Casitas A, King AE, Parella T, Costas M, Stahl SS, Ribas X. Chem. Sci. 2010; 1: 326
- 21c Casitas A, Poater A, Sola M, Stahl SS, Costas M, Ribas X. Dalton Trans. 2010; 39: 10458
- 21d Casitas A, Canta M, Sola M, Costas M, Ribas X. J. Am. Chem. Soc. 2011; 133: 19386
- 22 Van Hoveln, R.; Schomaker, J. M., unpublished results.
For selected reviews of C–H functionalization, see:
For examples of C–X reductive elimination in Pd(0)/Pd(II) catalytic cycles, see:
For relevant reviews, see:
For selected examples of aryl Cu(III) species from C–X oxidative insertion, see: