Subscribe to RSS
DOI: 10.1055/s-0032-1317965
A Simple and Efficient Method for One-Pot, Three-Component Synthesis of Terminal Vinylphosphonates Using a Task-Specific Ionic Liquid
Publication History
Received: 13 November 2012
Accepted after revision: 11 December 2012
Publication Date:
03 January 2013 (online)
Abstract
A convenient and practical method for the one-pot, three-component synthesis of terminal vinylphosphonates from readily available starting materials (aryl/alkyl/heteroaryl aldehydes, nitromethane and trialkylphosphites) through a tandem Henry–Michael reaction followed by nitro elimination in the presence of 5-hydroxypentylammonium acetate (5-HPAA) as a task-specific ionic liquid, is described. This method offers several advantages such as the use of a reusable and inexpensive ionic liquid, which is an environmentally benign reaction medium, and a simple reaction setup that does not require specialized equipment. The approach offers good yields of the products under mild reaction conditions.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References and Notes
- 1 Minami T, Motoyoshiya J. Synthesis 1992; 333
- 2a Minami T, Okauchi T, Kouno R. Synthesis 2001; 349
- 2b Dembitsky VM, Al-Quntar AA. A, Haj-Yehia A, Srebnik M. Mini-Rev. Org. Chem. 2005; 2: 91
- 2c Janecki T, Kedzia J, Wasek T. Synthesis 2009; 1227
- 2d Iorga B, Eymery F, Savignac P. Synthesis 1999; 207
- 3a Wang DY, Hu XP, Deng J, Yu SB, Duan ZC, Zheng Z. J. Org. Chem. 2009; 74: 4408
- 3b Goulioukina NS, Dolgina TM, Beletskaya IP, Henry JC, Lavergnr D, Ratovelomanana-Vidal V, Genet JP. Tetrahedron: Asymmetry 2001; 12: 319
- 4a Tarabay J, Al-Maksoud W, Jaber F, Pinel C, Prakash S, Djakovitch L. Appl. Catal., A 2010; 388: 124
- 4b Al-Maksoud W, Mesnager J, Jaber F, Pinel C, Djakovitch L. J. Organomet. Chem. 2009; 694: 3222
- 5a Jin S, Gonsalves KE. Macromolecules 1998; 31: 1010
- 5b Price D, Pyrah K, Hull TR, Milnes GJ, Ebdon JR, Hunt BJ, Joseph P. Polym. Degrad. Stab. 2002; 77: 227
- 6a Harnden MR, Parkin A, Parratt MJ, Perkins RM. J. Med. Chem. 1993; 36: 1343
- 6b Lazrek HB, Rochdi A, Khaider H, Barascut JL, Imbach JL, Balzarini J, Witvrouw M, Pannecouque C, Clercq ED. Tetrahedron 1998; 54: 3807
- 6c Holstein SA, Cermak DM, Wiemer DF, Lewis K, Hohl RJ. Bioorg. Med. Chem. 1998; 6: 687
- 7 Al-Quntar AA. A, Baum O, Reich R, Srebnik M. Arch. Pharm. 2004; 337: 76
- 8a Thielges S, Bisseret P, Eustache J. Org. Lett. 2005; 7: 681
- 8b Quntar AA. A, Rosenthal D, Srebnik M. Tetrahedron 2006; 62: 5995
- 8c Quntar AA. A, Melman A, Srebnik M. J. Org. Chem. 2002; 67: 3769
- 8d Öhler E, El-Badawi M, Zbiral E. Monatsh. Chem. 1985; 116: 77
- 8e Aboujaoude EE, Lietjé S, Collignon N, Teulade MP, Savignac P. Tetrahedron Lett. 1985; 26: 4435
- 8f Al-Quntar AA. A, Srebnik M. J. Organomet. Chem. 2005; 690: 2504
- 8g Abdullatif A, Moradov D, Al-Quntar AA. A, Srebnik M. Phosphorus, Sulfur Silicon Relat. Elem. 2012; 187: 937
- 8h Pergament I, Srebnik M. Tetrahedron Lett. 2001; 42: 8059
- 8i Gil JM, Oh DY. J. Org. Chem. 1999; 64: 2950
- 8j Cristau HJ, Mbianda XY, Beziat Y, Gasc MB. J. Organomet. Chem. 1997; 529: 301
- 8k Huang X, Xiong ZC. Synth. Commun. 2003; 33: 2511
- 8l Bhattacharya AK, Rana KC. Bioorg. Med. Chem. 2011; 19: 7129
- 8m Holt DA, Erb JM. Tetrahedron Lett. 1989; 30: 5393
- 8n Bessières B, Schoenfelder A, Verrat C, Mann A, Ornstein P, Pedregal C. Tetrahedron Lett. 2002; 43: 7659
- 8o Attolini M, Bouguir F, Iacazio G, Peiffer G, Maffei M. Tetrahedron 2001; 57: 537
- 8p Rostamnia S, Alizadeh A, Zhu LG. J. Comb. Chem. 2009; 11: 143
- 8q Cristau HJ, Gasc MB, Mbianda XY. J. Organomet. Chem. 1994; 474: C14
- 8r Evano G, Tadiparthi K, Couty F. Chem. Commun. 2011; 47: 179
- 8s Blaszczyk R, Gajda T. Heteroat. Chem. 2007; 18: 732
- 8t Gulykina NS, Dolgina TM, Bondarenko GN, Beletskaya IP. Russ. J. Org. Chem. 2003; 39: 797
- 8u Tavs P, Weitkamp H. Tetrahedron 1970; 26: 5529
- 8v Shin C, Yonezawa Y, Katayama K, Yoshimura J. Bull. Chem. Soc. Jpn. 1973; 46: 1727
- 9a Han LB, Tanaka M. J. Am. Chem. Soc. 1996; 118: 1571
- 9b Bailey PL, Jackson RF. W. Tetrahedron Lett. 1991; 32: 3119
- 9c Yamashita M, Tamada Y, Iida A, Oshikawa T. Synthesis 1990; 420
- 9d Krueger WE, Mclean MB, Rizwaniuk A, Maloney JR, Behelfer GL, Boland BE. J. Org. Chem. 1978; 43: 2877
- 9e Li SN, Xu LT, Chen Y, Li JL, He L. Lett. Org. Chem. 2011; 8: 416
- 9f Yamashita M, Kojima M, Yoshida H, Ogata T, Inokawa S. Bull. Chem. Soc. Jpn. 1980; 53: 1625
- 9g Krawczyk H, Koszuk J, Bodalski R. Pol. J. Chem. 2000; 74: 1123
- 10 Welton T. Chem. Rev. 1999; 99: 2071
- 11a Mi X, Luo S, Cheng JP. J. Org. Chem. 2005; 70: 2338
- 11b Hangarge RV, Jarikoteb DV, Shingare MS. Green Chem. 2002; 4: 266
- 12a Sobhani S, Honarmand M. J. Iran. Chem. Soc. 2012; 9: 661
- 12b Sobhani S, Nasseri R, Honarmand M. Can. J. Chem. 2012; 90: 798
- 12c Sobhani S, Honarmand M. C. R. Chimie 2013; in press
- 13 Three-Component, One-Pot Synthesis of Vinylphosphonates; General Procedure: 5-HPAA (0.5 mL) was added to a stirred mixture of aldehyde (1 mmol), nitromethane (1 mmol) and trialkylphosphite (1 mmol) at r.t. After stirring for the appropriate time (Table 2), H2O (10 mL) was added and the reaction mixture was extracted with EtOAc (3 × 10 mL). The combined organic layers were dried over Na2SO4 and filtered. Evaporation of the filtrate produced an almost pure product, which was purified further by chromatography on silica (n-hexane–EtOAc, 1:2). The separated aqueous layer containing 5-HPAA was evaporated, dried under reduced pressure at 100 °C for 24 h and reused in subsequent reactions.