Synlett 2013; 24(7): 883-885
DOI: 10.1055/s-0032-1318490
letter
© Georg Thieme Verlag Stuttgart · New York

Asymmetric Henry Reactions of Aldehydes Using Chiral Biaryl-Based Bis(thiourea) Organocatalysts

Yuki Nakayama
,
Yusaku Hidaka
,
Katsuji Ito*
Weitere Informationen

Publikationsverlauf

Received: 23. Januar 2013

Accepted after revision: 28. Februar 2013

Publikationsdatum:
11. März 2013 (online)


Abstract

Biaryl-based bis(thiourea) was found to be an efficient organocatalyst for the asymmetric Henry reaction. High enantioselectivity of up to 93% ee was obtained for the reaction of nitromethane with aryl aldehydes when the combination of N,O-bis(trimethylsilyl)trifluoroacetoamide (BSTFA) with a catalytic amount of potassium acetate was used as the base.

 
  • References and Notes

  • 1 Present address: Institute for Materials Chemistry and Engineering (IMCE), Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.

    • For reviews on the catalytic asymmetric Henry reaction, see:
    • 2a Boura J, Gogoi N, Saikia PP, Barua CN. Tetrahedron: Asymmetry 2006; 17: 3315
    • 2b Palomo C, Oiarbide M, Laso A. Eur. J. Org. Chem. 2007; 2561
  • 3 Sasai H, Suzuki T, Arai S, Arai T, Shibasaki M. J. Am. Chem. Soc. 1992; 114: 4418
  • 5 Chinchilla R, Nájera C, Sánchez-Agulló P. Tetrahedron: Asymmetry 1994; 5: 1393
  • 6 Ooi T, Doda K, Maruoka K. J. Am. Chem. Soc. 2003; 125: 2054
  • 8 Marcelli T, van der Haas RN. S, van Maarseveen JH, Hiemstra H. Angew. Chem. Int. Ed. 2006; 45: 929
  • 9 Liu X, Jiang J, Shi M. Tetrahedron: Asymmetry 2007; 18: 2773
  • 10 Ube H, Terada M. Bioorg. Med. Chem. Lett. 2009; 19: 3895
  • 11 Uraguchi D, Sakaki S, Ooi T. J. Am. Chem. Soc. 2007; 129: 12392
  • 12 Tang Z, Iida H, Hu H.-Y, Yashima E. ACS Macro Lett. 2012; 1: 261
  • 13 Lang K, Park J, Hong S. Angew. Chem. Int. Ed. 2012; 51: 1620
  • 14 Nakayama Y, Gotanda T, Ito K. Tetrahedron Lett. 2011; 52: 6234
  • 16 Use of the combination of BSTFA and KOAc as a base for palladium-catalyzed asymmetric allylic substitution: Ito K, Kashiwagi R, Hayashi S, Uchida T, Katsuki T. Synlett 2001; 284
  • 17 Typical Experimental Procedure is Exemplified by Henry Reaction of 4-Nitrobenzaldehyde with Nitromethane Catalyst 1 (8.1 mg, 10.0 μmol) was placed in microtube under nitrogen and to this tube was added BSTFA (5.5 μL, 20.0 μmol) in DMF (100 μL), a catalytic amount of KOAc (0.4–0.5 mg, 4.1–5.1 μmol), and 4-nitrobenzaldehyde (16.1 mg, 0.1 mmol). After the mixture was cooled to –40 °C, MeNO2 (55 μL, 1.0 mmol) was added at that temperature. After being stirred for 23 h at –40 °C, the mixture was quenched with H2O and extracted with EtOAc. The organic extract was dried over anhyd MgSO4 and concentrated. Silica gel chromatography of the residue (hexane–Et2O = 6:4) gave the desired product (19.3 mg, 91%). The ee of the product was determined to be 91% by HPLC using chiral stationary-phase column as described in the footnote of Table 1.
  • 18 Time-course studies suggested that the retro process is not involved in the reaction (3 h: 15% yield, 89% ee, 6 h: 35% yield, 88% ee, 12 h: 47% yield, 88% ee, 24 h: 90% yield, 89% ee). For the retro process in the asymmetric Henry reaction using organocatalyst, see ref. 7b.
  • 19 We also examined the reaction of aldehydes and EtNO2, but the reaction did not proceed.
  • 20 Absolute configuration of all nitro alcohols were determined by comparison of elution order of HPLC and specific rotation with the reported value.4b,g,j,9
    • 21a At the moment, we have no evidence that the nitronate anion is generated under the optimized conditions. However, we believe that the nitronate anion from MeNO2 (pK a = 10.2) is generated, because the imidate anion generated from BSA or BSTFA and KOAc can deprotonate dimethyl malonate (pK a = 13).
    • 21b For a review on the use of BSA in organic synthesis, see: El Gihani MT, Heaney H. Synthesis 1998; 357