Klin Monbl Augenheilkd 2013; 230(3): 223-231
DOI: 10.1055/s-0032-1327906
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Stellenwert ophthalmologischer Bildgebung bei häufigen hereditären Netzhauterkrankungen

Significance of Ophthalmological Imaging in Common Hereditary Retinal Diseases
K. Kortüm
Augenklinik der Ludwig-Maximilians-Universität, Klinikum der Universität München
,
M. Kernt
Augenklinik der Ludwig-Maximilians-Universität, Klinikum der Universität München
,
L. Reznicek
Augenklinik der Ludwig-Maximilians-Universität, Klinikum der Universität München
› Institutsangaben
Weitere Informationen

Publikationsverlauf

eingereicht 30. August 2012

akzeptiert 08. Oktober 2012

Publikationsdatum:
10. Dezember 2012 (online)

Zusammenfassung

Hintergrund: In den letzten Jahren kam es in der genetischen, funktionellen sowie in der bildgebenden Diagnostik hereditärer Netzhauterkrankungen zu entscheidenden Verbesserungen. Die optische Kohärenztomografie (OCT) sowie die Fundusautofluoreszenz (FAF) erlauben aus unterschiedlichen Blickpunkten heraus eine hochauflösende, nicht invasive Darstellung der retinalen und choroidalen Schichten des hinteren Augenfundus. Beide Verfahren nehmen einen zunehmend größeren Stellenwert in der Diagnostik hereditärer Netzhauterkrankungen ein.

Patienten/Methoden: Die in der Übersichtsarbeit vorgestellten Patienten wurden nach ausführlicher Familienanamnese klinisch ophthalmologisch untersucht. Bei allen Patienten wurden Spectral-Domain-OCT- sowie Fundusautofluoreszenzuntersuchungen durchgeführt und diese dann mit Ergebnissen anderer funktioneller oder molekulargenetischer Untersuchungsverfahren in den Kontext der jeweiligen Erkrankung gesetzt.

Ergebnisse: Anhand ausgewählter Fallbeispiele erblich bedingter Netzhauterkrankungen (Morbus Best, Morbus Stargardt, Zapfen-Stäbchen-Dystrophie, Retinitis pigmentosa, Achromatopsie und X-Chromosom-verknüpfte Retinoschisis) wird in dieser Übersichtsarbeit auf den Stellenwert der ophthalmologischen Bildgebung (OCT + FAF) bei der zielführenden Diagnostik erblich bedingter Netzhauterkrankungen eingegangen.

Schlussfolgerung: Die beschriebenen bildgebenden Verfahren (OCT + FAF) nehmen einen zunehmend größer werdenden Stellenwert in der Diagnostik und Differenzialdiagnose vererbbarer Netzhauterkrankungen ein. Durch die steigende Verfügbarkeit der Geräte ist eine frühzeitigere Erkennung morphologischer Veränderungen, die in der klinischen Funduskopie nicht sichtbar sind, möglich.

Abstract

Background: Over the past years, a significant progress in genetic, functional and imaging diagnostics in hereditary retinal diseases has been made. Optical coherence tomography (OCT) as well as fundus autofluorescence (FAF) allow for high-resolution, non-invasive imaging – from various perspectives – of retinal and choroidal layers of the posterior fundus. Both techniques have gained more and more significance in the diagnosis of hereditary retinal diseases.

Patients/Methods: Of all patients presented in this review, extensive family history was taken and a clinical ophthalmological examination performed. OCT scans as well as FAF images were acquired and compared to results of other functional and molecular genetic tests in the context of each disease.

Results: The presented cases in this review addressing hereditary retinal diseases (Bestʼs disease, Stargardtʼs disease, cone-rod dystrophy, retinitis pigmentosa, achromatopsia, and X-linked retinoschisis) show the significance of ophthalmic imaging (OCT + FAF) for a targeted diagnosis of hereditary retinal diseases.

Conclusion: The described imaging techniques (OCT + FAF) are becoming more and more important in the diagnosis of hereditary retinal diseases. Due to increasing availability of the devices, earlier detection of typical morphological changes not seen in clinical fundoscopy is feasible.

 
  • Literatur

  • 1 Kellner U, Kellner S, Renner AB et al. [Evidence-based diagnostic approach to inherited retinal dystrophies 2009]. Klin Monatsbl Augenheilkd 2009; 226: 999-1011
  • 2 Ferrari S, Di Iorio E, Barbaro V et al. Retinitis pigmentosa: genes and disease mechanisms. Curr Genomics 2011; 12: 238-249
  • 3 Klevering BJ, Deutman AF, Maugeri A et al. The spectrum of retinal phenotypes caused by mutations in the ABCA4 gene. Graefes Arch Clin Exp Ophthalmol 2005; 243: 90-100
  • 4 Wissinger B, Schaich S, Baumann B et al. Large deletions of the KCNV2 gene are common in patients with cone dystrophy with supernormal rod response. Hum Mutat 2011; 32: 1398-1406
  • 5 Wissinger B, Dangel S, Jagle H et al. Cone dystrophy with supernormal rod response is strictly associated with mutations in KCNV2. Invest Ophthalmol Vis Sci 2008; 49: 751-757
  • 6 Andreasson S. Developments in molecular genetics and electrophysiology in inherited retinal disorders. Acta Ophthalmol Scand 2006; 84: 161-168
  • 7 Arden G, Gunduz K, Perry S. Color vision testing with a computer graphics system: preliminary results. Doc Ophthalmol 1988; 69: 167-174
  • 8 Ruther K, Leo-Kottler B. [Diagnosis and management of hereditary optic atrophies and retinal degenerations]. Klin Monatsbl Augenheilkd 2008; 225: R143-R159 quiz R160–161
  • 9 Fercher AF, Hitzenberger CK, Drexler W et al. In vivo optical coherence tomography. Am J Ophthalmol 1993; 116: 113-114
  • 10 Fujinami K, Tsunoda K, Hanazono G et al. Fundus autofluorescence in autosomal dominant occult macular dystrophy. Arch Ophthalmol 2011; 129: 597-602
  • 11 Robson AG, Tufail A, Fitzke F et al. Serial imaging and structure-function correlates of high-density rings of fundus autofluorescence in retinitis pigmentosa. Retina 2011; 31: 1670-1679
  • 12 Schmitz-Valckenberg S, Holz FG, Bird AC et al. Fundus autofluorescence imaging: review and perspectives. Retina 2008; 28: 385-409
  • 13 Wakabayashi T, Sawa M, Gomi F et al. Correlation of fundus autofluorescence with photoreceptor morphology and functional changes in eyes with retinitis pigmentosa. Acta Ophthalmol 2010; 88: e177-e183
  • 14 Wabbels B, Demmler A, Paunescu K et al. Fundus autofluorescence in children and teenagers with hereditary retinal diseases. Graefes Arch Clin Exp Ophthalmol 2006; 244: 36-45
  • 15 Marmor M, Fulton A, Holder G et al. ISCEV Standard for full-field clinical electroretinography (2008 update). Documenta Ophthalmologica 2009; 118: 69-77
  • 16 Berninger T, Drobner B, Hogg C et al. [Color vision in relation to age: a study of normal values]. Klin Monatsbl Augenheilkd 1999; 215: 37-42
  • 17 Mohler CW, Fine SL. Long-term evaluation of patients with Bestʼs vitelliform dystrophy. Ophthalmology 1981; 88: 688-692
  • 18 Petrukhin K, Koisti MJ, Bakall B et al. Identification of the gene responsible for Best macular dystrophy. Nat Genet 1998; 19: 241-247
  • 19 Cross HE, Bard L. Electro-oculography in Bestʼs macular dystrophy. Am J Ophthalmol 1974; 77: 46-50
  • 20 Godel V, Chaine G, Regenbogen L et al. Bestʼs vitelliform macular dystrophy. Acta Ophthalmol Suppl 1986; 175: 1-31
  • 21 Querques G, Regenbogen M, Quijano C et al. High-definition optical coherence tomography features in vitelliform macular dystrophy. Am J Ophthalmol 2008; 146: 501-507
  • 22 Stargardt K. Über familiäre, progressive Degeneration in der Maculagegend des Auges. Albrecht von Graefes Arch Klin Exp Ophthalmol 1909; 7: 534-550
  • 23 Eagle jr. RC, Lucier AC, Bernardino jr. VB et al. Retinal pigment epithelial abnormalities in fundus flavimaculatus: a light and electron microscopic study. Ophthalmology 1980; 87: 1189-1200
  • 24 Briggs CE, Rucinski D, Rosenfeld PJ et al. Mutations in ABCR (ABCA4) in patients with Stargardt macular degeneration or cone-rod degeneration. Invest Ophthalmol Vis Sci 2001; 42: 2229-2236
  • 25 Sodi A, Bini A, Passerini I et al. Different patterns of fundus autofluorescence related to ABCA4 gene mutations in Stargardt disease. Ophthalmic Surg Lasers Imaging 2010; 41: 48-53
  • 26 Rudolph G, Kalpadakis P, Haritoglou C et al. [Mutations in the ABCA4 gene in a family with Stargardtʼs disease and retinitis pigmentosa (STGD1/RP19)]. Klin Monatsbl Augenheilkd 2002; 219: 590-596
  • 27 Fishman GA. Fundus flavimaculatus. A clinical classification. Arch Ophthalmol 1976; 94: 2061-2067
  • 28 Fishman GA, Stone EM, Grover S et al. Variation of clinical expression in patients with Stargardt dystrophy and sequence variations in the ABCR gene. Arch Ophthalmol 1999; 117: 504-510
  • 29 Hamel CP, Griffoin JM, Bazalgette C et al. [Molecular genetics of pigmentary retinopathies: identification of mutations in CHM, RDS, RHO, RPE65, USH2A and XLRS1 genes]. J Fr Ophtalmol 2000; 23: 985-995
  • 30 Daiger SP, Sullivan L, Bowne S. Retinal Information Network. Houston, Texas: Health Science Center, University of Texas – Houston; 2012. https://sph.uth.edu/retnet
  • 31 Sundin OH, Yang JM, Li Y et al. Genetic basis of total colourblindness among the Pingelapese islanders. Nat Genet 2000; 25: 289-293
  • 32 Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet 2006; 368: 1795-1809
  • 33 Bader I, Brandau O, Achatz H et al. X-linked retinitis pigmentosa: RPGR mutations in most families with definite X linkage and clustering of mutations in a short sequence stretch of exon ORF15. Invest Ophthalmol Vis Sci 2003; 44: 1458-1463
  • 34 Keats BJ, Savas S. Genetic heterogeneity in Usher syndrome. Am J Med Genet A 2004; 130?A: 13-16
  • 35 Katsanis N. The oligogenic properties of Bardet-Biedl syndrome. Hum Mol Genet 2004; 13 Spec No 1: R65-R71
  • 36 Lupo S, Grenga PL, Vingolo EM. Fourier-domain optical coherence tomography and microperimetry findings in retinitis pigmentosa. Am J Ophthalmol 2011; 151: 106-111
  • 37 Michaelides M, Hunt DM, Moore AT. The cone dysfunction syndromes. Br J Ophthalmol 2004; 88: 291-297
  • 38 Kohl S, Baumann B, Broghammer M et al. Mutations in the CNGB3 gene encoding the beta-subunit of the cone photoreceptor cGMP-gated channel are responsible for achromatopsia (ACHM3) linked to chromosome 8q21. Hum Mol Genet 2000; 9: 2107-2116
  • 39 Kohl S, Baumann B, Rosenberg T et al. Mutations in the cone photoreceptor G-protein alpha-subunit gene GNAT2 in patients with achromatopsia. Am J Hum Genet 2002; 71: 422-425
  • 40 Kohl S, Varsanyi B, Antunes GA et al. CNGB3 mutations account for 50 % of all cases with autosomal recessive achromatopsia. Eur J Hum Genet 2005; 13: 302-308
  • 41 Genead MA, Fishman GA, Rha J et al. Photoreceptor structure and function in patients with congenital achromatopsia. Invest Ophthalmol Vis Sci 2011; 52: 7298-7308
  • 42 Hood DC, Zhang X, Ramachandran R et al. The inner segment/outer segment border seen on optical coherence tomography is less intense in patients with diminished cone function. Invest Ophthalmol Vis Sci 2011; 52: 9703-9709
  • 43 Thomas MG, Kumar A, Kohl S et al. High-resolution in vivo imaging in achromatopsia. Ophthalmology 2011; 118: 882-887
  • 44 Varsanyi B, Somfai GM, Lesch B et al. Optical coherence tomography of the macula in congenital achromatopsia. Invest Ophthalmol Vis Sci 2007; 48: 2249-2253
  • 45 De La Chappelle A AT, Forsius H. X-linked juvenile Retinoschisis. Chur, Switzerland: Harwood Academic Publishers; 1994
  • 46 Tantri A, Vrabec TR, Cu-Unjieng A et al. X-linked retinoschisis: a clinical and molecular genetic review. Surv Ophthalmol 2004; 49: 214-230
  • 47 Molday RS, Kellner U, Weber BH. X-linked juvenile retinoschisis: clinical diagnosis, genetic analysis, and molecular mechanisms. Prog Retin Eye Res 2012; 31: 195-212
  • 48 Genead MA, Fishman GA, Walia S. Efficacy of sustained topical dorzolamide therapy for cystic macular lesions in patients with X-linked retinoschisis. Arch Ophthalmol 2010; 128: 190-197