Semin Neurol 2012; 32(03): 255-263
DOI: 10.1055/s-0032-1329199
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

The Muscular Dystrophies

Kevin M. Flanigan
1   Departments of Pediatrics and Neurology, The Center for Gene Therapy, The Research Institute, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio
› Author Affiliations
Further Information

Publication History

Publication Date:
01 November 2012 (online)

Abstract

The muscular dystrophies are disorders of progressive muscular degeneration and weakness. As a group they display clinical heterogeneity that reflects the heterogeneity of molecular mechanisms responsible for them, and range from congenital to adulthood onset. Recent advances in the field include improved methods of diagnosis, continued identification of disease genes, and the development of a unified model of pathogenesis in facioscapulohumeral dystrophy. These advances are reflected in the development of new therapeutic approaches, some of which have already led to clinical trials in the dystrophinopathies and limb-girdle dystrophies.

 
  • References

  • 1 Koenig M, Hoffman EP, Bertelson CJ, Monaco AP, Feener C, Kunkel LM. Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 1987; 50 (3) 509-517
  • 2 McMillan HJ, Gregas M, Darras BT, Kang PB. Serum transaminase levels in boys with Duchenne and Becker muscular dystrophy. Pediatrics 2011; 127 (1) e132-e136
  • 3 Urganci N, Arapoğlu M, Serdaroğlu P, Nuhoğlu A. Incidental raised transaminases: a clue to muscle disease. Ann Trop Paediatr 2006; 26 (4) 345-348
  • 4 Monaco AP, Bertelson CJ, Liechti-Gallati S, Moser H, Kunkel LM. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics 1988; 2 (1) 90-95
  • 5 Flanigan KM, Dunn DM, von Niederhausern A , et al; United Dystrophinopathy Project Consortium. Mutational spectrum of DMD mutations in dystrophinopathy patients: application of modern diagnostic techniques to a large cohort. Hum Mutat 2009; 30 (12) 1657-1666
  • 6 McDonald CM, Abresch RT, Carter GT, Fowler Jr WM, Johnson ER, Kilmer DD. Profiles of neuromuscular diseases. Becker's muscular dystrophy. Am J Phys Med Rehabil 1995; 74 (5, Suppl) S93-S103
  • 7 Flanigan KM, Dunn DM, von Niederhausern A , et al. DMD Trp3X nonsense mutation associated with a founder effect in North American families with mild Becker muscular dystrophy. Neuromuscul Disord 2009; 19 (11) 743-748
  • 8 Dent KM, Dunn DM, von Niederhausern AC , et al. Improved molecular diagnosis of dystrophinopathies in an unselected clinical cohort. Am J Med Genet A 2005; 134 (3) 295-298
  • 9 Flanigan KM, von Niederhausern A, Dunn DM, Alder J, Mendell JR, Weiss RB. Rapid direct sequence analysis of the dystrophin gene. Am J Hum Genet 2003; 72 (4) 931-939
  • 10 Yan J, Feng J, Buzin CH , et al. Three-tiered noninvasive diagnosis in 96% of patients with Duchenne muscular dystrophy (DMD). Hum Mutat 2004; 23 (2) 203-204
  • 11 Mendell JR, Shilling C, Leslie ND , et al. Evidence-based path to newborn screening for Duchenne muscular dystrophy. Ann Neurol 2012; 71 (3) 304-313
  • 12 Disset A, Bourgeois CF, Benmalek N, Claustres M, Stevenin J, Tuffery-Giraud S. An exon skipping-associated nonsense mutation in the dystrophin gene uncovers a complex interplay between multiple antagonistic splicing elements. Hum Mol Genet 2006; 15 (6) 999-1013
  • 13 Gurvich OL, Tuohy TM, Howard MT , et al. DMD pseudoexon mutations: splicing efficiency, phenotype, and potential therapy. Ann Neurol 2008; 63 (1) 81-89
  • 14 Arechavala-Gomeza V, Graham IR, Popplewell LJ , et al. Comparative analysis of antisense oligonucleotide sequences for targeted skipping of exon 51 during dystrophin pre-mRNA splicing in human muscle. Hum Gene Ther 2007; 18 (9) 798-810
  • 15 Arechavala-Gomeza V, Kinali M, Feng L , et al. Immunohistological intensity measurements as a tool to assess sarcolemma-associated protein expression. Neuropathol Appl Neurobiol 2010; 36 (4) 265-274
  • 16 Taylor LE, Kaminoh YJ, Rodesch CK, Flanigan KM. Quantification of dystrophin immunofluorescence in dystrophinopathy muscle specimens. Neuropathol Appl Neurobiol 2012; doi : 10.1111/j.1365-2990.2012.01250.x (Epub ahead of print)
  • 17 Arechavala-Gomeza V, Kinali M, Feng L , et al. Revertant fibres and dystrophin traces in Duchenne muscular dystrophy: implication for clinical trials. Neuromuscul Disord 2010; 20 (5) 295-301
  • 18 Anthony K, Cirak S, Torelli S , et al. Dystrophin quantification and clinical correlations in Becker muscular dystrophy: implications for clinical trials. Brain 2011; 134 (Pt 12) 3547-3559
  • 19 Neri M, Torelli S, Brown S , et al. Dystrophin levels as low as 30% are sufficient to avoid muscular dystrophy in the human. Neuromuscul Disord 2007; 17 (11-12) 913-918
  • 20 Manzur AY, Kuntzer T, Pike M, Swan A. Glucocorticoid corticosteroids for Duchenne muscular dystrophy. Cochrane Database Syst Rev 2008; (1) CD003725
  • 21 Biggar WD, Politano L, Harris VA , et al. Deflazacort in Duchenne muscular dystrophy: a comparison of two different protocols. Neuromuscul Disord 2004; 14 (8-9) 476-482
  • 22 Escolar DM, Hache LP, Clemens PR , et al. Randomized, blinded trial of weekend vs daily prednisone in Duchenne muscular dystrophy. Neurology 2011; 77 (5) 444-452
  • 23 Merlini L, Cicognani A, Malaspina E , et al. Early prednisone treatment in Duchenne muscular dystrophy. Muscle Nerve 2003; 27 (2) 222-227
  • 24 Bach JR, Martinez D, Saulat B. Duchenne muscular dystrophy: the effect of glucocorticoids on ventilator use and ambulation. Am J Phys Med Rehabil 2010; 89 (8) 620-624
  • 25 Biggar WD, Harris VA, Eliasoph L, Alman B. Long-term benefits of deflazacort treatment for boys with Duchenne muscular dystrophy in their second decade. Neuromuscul Disord 2006; 16 (4) 249-255
  • 26 Malik V, Rodino-Klapac LR, Viollet L , et al. Gentamicin-induced readthrough of stop codons in Duchenne muscular dystrophy. Ann Neurol 2010; 67 (6) 771-780
  • 27 Welch EM, Barton ER, Zhuo J , et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature 2007; 447 (7140) 87-91
  • 28 Goemans NM, Tulinius M, van den Akker JT , et al. Systemic administration of PRO051 in Duchenne's muscular dystrophy. N Engl J Med 2011; 364 (16) 1513-1522
  • 29 van Deutekom JC, Janson AA, Ginjaar IB , et al. Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med 2007; 357 (26) 2677-2686
  • 30 Cirak S, Arechavala-Gomeza V, Guglieri M , et al. Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet 2011; 378 (9791) 595-605
  • 31 Kinali M, Arechavala-Gomeza V, Feng L , et al. Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol 2009; 8 (10) 918-928
  • 32 Rodino-Klapac LR, Chicoine LG, Kaspar BK, Mendell JR. Gene therapy for duchenne muscular dystrophy: expectations and challenges. Arch Neurol 2007; 64 (9) 1236-1241
  • 33 Mendell JR, Campbell K, Rodino-Klapac L , et al. Dystrophin immunity in Duchenne's muscular dystrophy. N Engl J Med 2010; 363 (15) 1429-1437
  • 34 Mendell JR, Rodino-Klapac L, Sahenk Z , et al. Gene therapy for muscular dystrophy: Lessons learned and path forward. Neurosci Lett 2012; ; Epub ahead of print
  • 35 Tinsley J, Deconinck N, Fisher R , et al. Expression of full-length utrophin prevents muscular dystrophy in mdx mice. Nat Med 1998; 4 (12) 1441-1444
  • 36 Rooney JE, Knapp JR, Hodges BL, Wuebbles RD, Burkin DJ. Laminin-111 protein therapy reduces muscle pathology and improves viability of a mouse model of merosin-deficient congenital muscular dystrophy. Am J Pathol 2012; 180 (4) 1593-1602
  • 37 Martin PT, Xu R, Rodino-Klapac LR , et al. Overexpression of Galgt2 in skeletal muscle prevents injury resulting from eccentric contractions in both mdx and wild-type mice. Am J Physiol Cell Physiol 2009; 296 (3) C476-C488
  • 38 Bogdanovich S, Krag TO, Barton ER , et al. Functional improvement of dystrophic muscle by myostatin blockade. Nature 2002; 420 (6914) 418-421
  • 39 Rodino-Klapac LR, Haidet AM, Kota J, Handy C, Kaspar BK, Mendell JR. Inhibition of myostatin with emphasis on follistatin as a therapy for muscle disease. Muscle Nerve 2009; 39 (3) 283-296
  • 40 Wagner KR, McPherron AC, Winik N, Lee SJ. Loss of myostatin attenuates severity of muscular dystrophy in mdx mice. Ann Neurol 2002; 52 (6) 832-836
  • 41 Eagle M, Baudouin SV, Chandler C, Giddings DR, Bullock R, Bushby K. Survival in Duchenne muscular dystrophy: improvements in life expectancy since 1967 and the impact of home nocturnal ventilation. Neuromuscul Disord 2002; 12 (10) 926-929
  • 42 Eagle M, Bourke J, Bullock R , et al. Managing Duchenne muscular dystrophy—the additive effect of spinal surgery and home nocturnal ventilation in improving survival. Neuromuscul Disord 2007; 17 (6) 470-475
  • 43 Viollet L, Thrush PT, Flanigan KM, Mendell JR, Allen HD. Effects of angiotensin-converting enzyme inhibitors and/or beta blockers on the cardiomyopathy in Duchenne muscular dystrophy. Am J Cardiol 2012; 110 (1) 98-102
  • 44 Duboc D, Meune C, Lerebours G, Devaux JY, Vaksmann G, Bécane HM. Effect of perindopril on the onset and progression of left ventricular dysfunction in Duchenne muscular dystrophy. J Am Coll Cardiol 2005; 45 (6) 855-857
  • 45 Cohn RD, van Erp C, Habashi JP , et al. Angiotensin II type 1 receptor blockade attenuates TGF-beta-induced failure of muscle regeneration in multiple myopathic states. Nat Med 2007; 13 (2) 204-210
  • 46 Hauser MA, Horrigan SK, Salmikangas P , et al. Myotilin is mutated in limb girdle muscular dystrophy 1A. Hum Mol Genet 2000; 9 (14) 2141-2147
  • 47 Olivé M, Goldfarb LG, Shatunov A, Fischer D, Ferrer I. Myotilinopathy: refining the clinical and myopathological phenotype. Brain 2005; 128 (Pt 10) 2315-2326
  • 48 Selcen D, Engel AG. Mutations in myotilin cause myofibrillar myopathy. Neurology 2004; 62 (8) 1363-1371
  • 49 Muchir A, Bonne G, van der Kooi AJ , et al. Identification of mutations in the gene encoding lamins A/C in autosomal dominant limb girdle muscular dystrophy with atrioventricular conduction disturbances (LGMD1B). Hum Mol Genet 2000; 9 (9) 1453-1459
  • 50 van der Kooi AJ, Ledderhof TM, de Voogt WG , et al. A newly recognized autosomal dominant limb girdle muscular dystrophy with cardiac involvement. Ann Neurol 1996; 39 (5) 636-642
  • 51 Benedetti S, Menditto I, Degano M , et al. Phenotypic clustering of lamin A/C mutations in neuromuscular patients. Neurology 2007; 69 (12) 1285-1292
  • 52 Minetti C, Sotgia F, Bruno C , et al. Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy. Nat Genet 1998; 18 (4) 365-368
  • 53 Kubisch C, Schoser BG, von Düring M , et al. Homozygous mutations in caveolin-3 cause a severe form of rippling muscle disease. Ann Neurol 2003; 53 (4) 512-520
  • 54 Fulizio L, Nascimbeni AC, Fanin M , et al. Molecular and muscle pathology in a series of caveolinopathy patients. Hum Mutat 2005; 25 (1) 82-89
  • 55 Sarparanta J, Jonson PH, Golzio C , et al. Mutations affecting the cytoplasmic functions of the co-chaperone DNAJB6 cause limb-girdle muscular dystrophy. Nat Genet 2012; 44 (4) 450-455 , S1–S2
  • 56 Harms MB, Sommerville RB, Allred P , et al. Exome sequencing reveals DNAJB6 mutations in dominantly-inherited myopathy. Ann Neurol 2012; 71 (3) 407-416
  • 57 Bushby KM, Beckmann JS. The 105th ENMC sponsored workshop: pathogenesis in the non-sarcoglycan limb-girdle muscular dystrophies, Naarden, April 12-14, 2002. Neuromuscul Disord 2003; 13 (1) 80-90
  • 58 Richard I, Broux O, Allamand V , et al. Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell 1995; 81 (1) 27-40
  • 59 Bashir R, Britton S, Strachan T , et al. A gene related to Caenorhabditis elegans spermatogenesis factor fer-1 is mutated in limb-girdle muscular dystrophy type 2B. Nat Genet 1998; 20 (1) 37-42
  • 60 Anderson LV, Harrison RM, Pogue R , et al. Secondary reduction in calpain 3 expression in patients with limb girdle muscular dystrophy type 2B and Miyoshi myopathy (primary dysferlinopathies). Neuromuscul Disord 2000; 10 (8) 553-559
  • 61 Vainzof M, Anderson LV, McNally EM , et al. Dysferlin protein analysis in limb-girdle muscular dystrophies. J Mol Neurosci 2001; 17 (1) 71-80
  • 62 Walter MC, Braun C, Vorgerd M , et al. Variable reduction of caveolin-3 in patients with LGMD2B/MM. J Neurol 2003; 250 (12) 1431-1438
  • 63 Noguchi S, McNally EM, Ben Othmane K , et al. Mutations in the dystrophin-associated protein gamma-sarcoglycan in chromosome 13 muscular dystrophy. [see comments] Science 1995; 270 (5237) 819-822
  • 64 Roberds SL, Leturcq F, Allamand V , et al. Missense mutations in the adhalin gene linked to autosomal recessive muscular dystrophy. Cell 1994; 78 (4) 625-633
  • 65 Lim LE, Duclos F, Broux O , et al. Beta-sarcoglycan: characterization and role in limb-girdle muscular dystrophy linked to 4q12. Nat Genet 1995; 11 (3) 257-265
  • 66 Nigro V, Piluso G, Belsito A , et al. Identification of a novel sarcoglycan gene at 5q33 encoding a sarcolemmal 35 kDa glycoprotein. Hum Mol Genet 1996; 5 (8) 1179-1186
  • 67 Bolduc V, Marlow G, Boycott KM , et al. Recessive mutations in the putative calcium-activated chloride channel Anoctamin 5 cause proximal LGMD2L and distal MMD3 muscular dystrophies. Am J Hum Genet 2010; 86 (2) 213-221
  • 68 Schessl J, Kress W, Schoser B. Novel ANO5 mutations causing hyper-CK-emia, limb girdle muscular weakness and Miyoshi type of muscular dystrophy. Muscle Nerve 2012; 45 (5) 740-742
  • 69 Hicks D, Sarkozy A, Muelas N , et al. A founder mutation in anoctamin 5 is a major cause of limb-girdle muscular dystrophy. Brain 2011; 134 (Pt 1) 171-182
  • 70 Brockington M, Blake DJ, Prandini P , et al. Mutations in the fukutin-related protein gene (FKRP) cause a form of congenital muscular dystrophy with secondary laminin alpha2 deficiency and abnormal glycosylation of alpha-dystroglycan. Am J Hum Genet 2001; 69 (6) 1198-1209
  • 71 Schwartz M, Hertz JM, Sveen ML, Vissing J. LGMD2I presenting with a characteristic Duchenne or Becker muscular dystrophy phenotype. Neurology 2005; 64 (9) 1635-1637
  • 72 Mendell JR, Rodino-Klapac LR, Rosales XQ , et al. Sustained alpha-sarcoglycan gene expression after gene transfer in limb-girdle muscular dystrophy, type 2D. Ann Neurol 2010; 68 (5) 629-638
  • 73 Grose WE, Clark KR, Griffin D , et al. Homologous recombination mediates functional recovery of dysferlin deficiency following AAV5 gene transfer. PLoS ONE 2012; 7 (6) e39233
  • 74 Flanigan KM, Coffeen CM, Sexton L, Stauffer D, Brunner S, Leppert MF. Genetic characterization of a large, historically significant Utah kindred with facioscapulohumeral dystrophy. Neuromuscul Disord 2001; 11 (6-7) 525-529
  • 75 Awerbuch GI, Nigro MA, Wishnow R. Beevor's sign and facioscapulohumeral dystrophy. Arch Neurol 1990; 47 (11) 1208-1209
  • 76 Bushby KM, Pollitt C, Johnson MA, Rogers MT, Chinnery PF. Muscle pain as a prominent feature of facioscapulohumeral muscular dystrophy (FSHD): four illustrative case reports. Neuromuscul Disord 1998; 8 (8) 574-579
  • 77 Flanigan KM. Facioscapulohumeral muscular dystrophy and scapuloperoneal syndromes. In: Engel AD, Franzini-Armstrong C, , eds. Myology. 3rd ed. New York: McGraw-Hill; 2004
  • 78 Lunt PW, Jardine PE, Koch MC , et al. Correlation between fragment size at D4F104S1 and age at onset or at wheelchair use, with a possible generational effect, accounts for much phenotypic variation in 4q35-facioscapulohumeral muscular dystrophy (FSHD). . [published erratum appears in Hum Mol Genet 1995 Jul;4(7):1243–4] Hum Mol Genet 1995; 4 (5) 951-958
  • 79 Tawil R, Forrester J, Griggs RC , et al; The FSH-DY Group. Evidence for anticipation and association of deletion size with severity in facioscapulohumeral muscular dystrophy. Ann Neurol 1996; 39 (6) 744-748
  • 80 Zatz M, Marie SK, Passos-Bueno MR , et al. High proportion of new mutations and possible anticipation in Brazilian facioscapulohumeral muscular dystrophy families. Am J Hum Genet 1995; 56 (1) 99-105
  • 81 Brouwer OF, Padberg GW, Ruys CJ, Brand R, de Laat JA, Grote JJ. Hearing loss in facioscapulohumeral muscular dystrophy. Neurology 1991; 41 (12) 1878-1881
  • 82 Padberg GW, Brouwer OF, de Keizer RJ , et al. On the significance of retinal vascular disease and hearing loss in facioscapulohumeral muscular dystrophy. Muscle Nerve 1995; 2: S73-S80
  • 83 Rogers MT, Zhao F, Harper PS, Stephens D. Absence of hearing impairment in adult onset facioscapulohumeral muscular dystrophy. Neuromuscul Disord 2002; 12 (4) 358-365
  • 84 Fitzsimons RB, Gurwin EB, Bird AC. Retinal vascular abnormalities in facioscapulohumeral muscular dystrophy. A general association with genetic and therapeutic implications. Brain 1987; 110 (Pt 3) 631-648
  • 85 Bodensteiner JB, Schochet SS. Facioscapulohumeral muscular dystrophy: the choice of a biopsy site. Muscle Nerve 1986; 9 (6) 544-547
  • 86 Arahata K, Ishihara T, Fukunaga H , et al. Inflammatory response in facioscapulohumeral muscular dystrophy (FSHD): immunocytochemical and genetic analyses. Muscle Nerve 1995; 2: S56-S66
  • 87 Figarella-Branger D, Pellissier JF, Serratrice G, Pouget J, Bianco N. [Immunocytochemical study of the inflammatory forms of facioscapulohumeral myopathies and correlation with other types of myositis]. Ann Pathol 1989; 9 (2) 100-108
  • 88 Menga WJ et al. Chromosome 4q DNA rearrangements associated with facioscapulohumeral muscular dystrophy. Nat Genet 1992; 2: 26-30
  • 89 Lemmers RJLF, van der Maarel SM, van Deutekom JCT , et al. Inter- and intrachromosomal sub-telomeric rearrangements on 4q35: implications for facioscapulohumeral muscular dystrophy (FSHD) aetiology and diagnosis. Hum Mol Genet 1998; 7: 1207-1214
  • 90 van Overveld PG, Lemmers RJ, Sandkuijl LA , et al. Hypomethylation of D4Z4 in 4q-linked and non-4q-linked facioscapulohumeral muscular dystrophy. Nat Genet 2003; 35 (4) 315-317
  • 91 de Greef JC, Lemmers RJLF, Camaño P , et al. Clinical features of facioscapulohumeral muscular dystrophy type 2. Neurology 2010; 75: 1548-1554
  • 92 Lemmers RJ, van der Vliet PJ, Klooster R , et al. A unifying genetic model for facioscapulohumeral muscular dystrophy. Science 2010; 329 (5999) 1650-1653
  • 93 Wallace LM, Liu J, Domire JS , et al. RNA interference inhibits DUX4-induced muscle toxicity in vivo: implications for a targeted FSHD therapy. Mol Ther 2012; 20 (7) 1417-1423
  • 94 Wallace LM, Garwick SE, Mei W , et al. DUX4, a candidate gene for facioscapulohumeral muscular dystrophy, causes p53-dependent myopathy in vivo. Ann Neurol 2011; 69 (3) 540-552
  • 95 Voet NB, van der Kooi EL, Riphagen II, Lindeman E, van Engelen BG, Geurts ACh. Strength training and aerobic exercise training for muscle disease. Cochrane Database Syst Rev 2010; (1) CD003907
  • 96 Bertini E, D'Amico A, Gualandi F, Petrini S. Congenital muscular dystrophies: a brief review. Semin Pediatr Neurol 2011; 18 (4) 277-288
  • 97 Sparks SE, Escolar DM. Congenital muscular dystrophies. Handb Clin Neurol 2011; 101: 47-79
  • 98 Helbling-Leclerc A, Zhang X, Topaloglu H , et al. Mutations in the laminin alpha 2-chain gene (LAMA2) cause merosin-deficient congenital muscular dystrophy. Nat Genet 1995; 11 (2) 216-218
  • 99 Martin PT. Congenital muscular dystrophies involving the O-mannose pathway. Curr Mol Med 2007; 7 (4) 417-425
  • 100 Mercuri E, Messina S, Bruno C , et al. Congenital muscular dystrophies with defective glycosylation of dystroglycan: a population study. Neurology 2009; 72 (21) 1802-1809
  • 101 Godfrey C, Clement E, Mein R , et al. Refining genotype phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan. Brain 2007; 130 (Pt 10) 2725-2735
  • 102 Fukuyama Y, Osawa M, Suzuki H. Congenital progressive muscular dystrophy of the Fukuyama type - clinical, genetic and pathological considerations. Brain Dev 1981; 3 (1) 1-29
  • 103 Balci B, Uyanik G, Dincer P , et al. An autosomal recessive limb girdle muscular dystrophy (LGMD2) with mild mental retardation is allelic to Walker-Warburg syndrome (WWS) caused by a mutation in the POMT1 gene. Neuromuscul Disord 2005; 15 (4) 271-275
  • 104 Vuillaumier-Barrot S, Quijano-Roy S, Bouchet-Seraphin C , et al. Four Caucasian patients with mutations in the fukutin gene and variable clinical phenotype. Neuromuscul Disord 2009; 19 (3) 182-188
  • 105 Biancheri R, Falace A, Tessa A , et al. POMT2 gene mutation in limb-girdle muscular dystrophy with inflammatory changes. Biochem Biophys Res Commun 2007; 363 (4) 1033-1037
  • 106 Clement EM, Godfrey C, Tan J , et al. Mild POMGnT1 mutations underlie a novel limb-girdle muscular dystrophy variant. Arch Neurol 2008; 65 (1) 137-141
  • 107 Higuchi I, Shiraishi T, Hashiguchi T , et al. Frameshift mutation in the collagen VI gene causes Ullrich's disease. Ann Neurol 2001; 50 (2) 261-265
  • 108 Camacho Vanegas O, Bertini E, Zhang RZ , et al. Ullrich scleroatonic muscular dystrophy is caused by recessive mutations in collagen type VI. Proc Natl Acad Sci U S A 2001; 98 (13) 7516-7521
  • 109 Nadeau A, Kinali M, Main M , et al. Natural history of Ullrich congenital muscular dystrophy. Neurology 2009; 73 (1) 25-31
  • 110 Lampe AK, Dunn DM, von Niederhausern AC , et al. Automated genomic sequence analysis of the three collagen VI genes: applications to Ullrich congenital muscular dystrophy and Bethlem myopathy. J Med Genet 2005; 42 (2) 108-120
  • 111 Okada M, Kawahara G, Noguchi S , et al. Primary collagen VI deficiency is the second most common congenital muscular dystrophy in Japan. Neurology 2007; 69 (10) 1035-1042
  • 112 Peat RA, Smith JM, Compton AG , et al. Diagnosis and etiology of congenital muscular dystrophy. Neurology 2008; 71 (5) 312-321
  • 113 Pace RA, Peat RA, Baker NL , et al. Collagen VI glycine mutations: perturbed assembly and a spectrum of clinical severity. Ann Neurol 2008; 64 (3) 294-303
  • 114 Jöbsis GJ, Keizers H, Vreijling JP , et al. Type VI collagen mutations in Bethlem myopathy, an autosomal dominant myopathy with contractures. Nat Genet 1996; 14 (1) 113-115
  • 115 Foley AR, Hu Y, Zou Y , et al. Autosomal recessive inheritance of classic Bethlem myopathy. Neuromuscul Disord 2009; 19 (12) 813-817
  • 116 Allamand V, Briñas L, Richard P, Stojkovic T, Quijano-Roy S, Bonne G. ColVI myopathies: where do we stand, where do we go?. Skelet Muscle 2011; 1: 30
  • 117 Lampe AK, Bushby KM. Collagen VI related muscle disorders. J Med Genet 2005; 42 (9) 673-685
  • 118 Moghadaszadeh B, Petit N, Jaillard C , et al. Mutations in SEPN1 cause congenital muscular dystrophy with spinal rigidity and restrictive respiratory syndrome. Nat Genet 2001; 29 (1) 17-18
  • 119 Flanigan KM, Kerr L, Bromberg MB , et al. Congenital muscular dystrophy with rigid spine syndrome: a clinical, pathological, radiological, and genetic study. Ann Neurol 2000; 47 (2) 152-161
  • 120 Scoto M, Cirak S, Mein R , et al. SEPN1-related myopathies: clinical course in a large cohort of patients. Neurology 2011; 76 (24) 2073-2078
  • 121 Clarke NF, Kidson W, Quijano-Roy S , et al. SEPN1: associated with congenital fiber-type disproportion and insulin resistance. Ann Neurol 2006; 59 (3) 546-552
  • 122 Ferreiro A, Ceuterick-de Groote C, Marks JJ , et al. Desmin-related myopathy with Mallory body-like inclusions is caused by mutations of the selenoprotein N gene. Ann Neurol 2004; 55 (5) 676-686
  • 123 Ferreiro A, Quijano-Roy S, Pichereau C , et al. Mutations of the selenoprotein N gene, which is implicated in rigid spine muscular dystrophy, cause the classical phenotype of multiminicore disease: reassessing the nosology of early-onset myopathies. Am J Hum Genet 2002; 71 (4) 739-749
  • 124 Castets P, Lescure A, Guicheney P, Allamand V. Selenoprotein N in skeletal muscle: from diseases to function. J Mol Med (Berl) 2012;
  • 125 Barresi R, Michele DE, Kanagawa M , et al. LARGE can functionally bypass alpha-dystroglycan glycosylation defects in distinct congenital muscular dystrophies. Nat Med 2004; 10 (7) 696-703
  • 126 Xu R, DeVries S, Camboni M, Martin PT. Overexpression of Galgt2 reduces dystrophic pathology in the skeletal muscles of alpha sarcoglycan-deficient mice. Am J Pathol 2009; 175 (1) 235-247
  • 127 Xu R, Chandrasekharan K, Yoon JH, Camboni M, Martin PT. Overexpression of the cytotoxic T cell (CT) carbohydrate inhibits muscular dystrophy in the dyW mouse model of congenital muscular dystrophy 1A. Am J Pathol 2007; 171 (1) 181-199
  • 128 Merlini L, Sabatelli P, Armaroli A , et al. Cyclosporine A in Ullrich congenital muscular dystrophy: long-term results. Oxid Med Cell Longev 2011; 2011 (139194) 139194