Rofo 2013; 185(3): 253-261
DOI: 10.1055/s-0032-1330270
Qualität/Qualitätssicherung
© Georg Thieme Verlag KG Stuttgart · New York

PI-RADS-Klassifikation: Strukturiertes Befundungsschema für die MRT der Prostata

PI-RADS Classification: Structured Reporting for MRI of the Prostate
M. Röthke
1   Abteilung für Radiologie, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg
,
D. Blondin
2   Institut für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Düsseldorf, Med. Fakultät der HHU
,
H.-P. Schlemmer
1   Abteilung für Radiologie, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg
,
T. Franiel
3   Institut für Radiologie, Campus Charité Mitte, Universitätsmedizin Berlin
› Author Affiliations
Further Information

Publication History

11 May 2012

12 October 2012

Publication Date:
12 February 2013 (online)

Zusammenfassung

Ziel: Konkretisierung der ESUR-Leitlinien zur standardisierten Befundung der multiparametrischen MRT zur Detektion des Prostatakarzinoms und Vorstellung eines grafischen Befundschemas zur Vereinfachung der Befundübermittlung an den Urologen.

Material und Methoden: Kürzlich wurde von der ESUR ein strukturiertes Befundungsschema für die multiparametrische MRT der Prostata beschrieben (PI-RADS). Hierbei wurden die Ausprägungen der einzelnen Methoden, bestehend aus der T2-gewichteten, der diffusionsgewichteten, der dynamischen kontrastmittelgestützten MRT und MR-Spektroskopie auf einer Likert-Skala von 1 – 5 angegeben. Die Grundlagen der technischen Durchführung unter Berücksichtigung der Gegebenheiten des deutschsprachigen Raumes wurden im Konsensus ermittelt sowie repräsentative Bildbeispiele auf Grundlage von Untersuchungen der 3 Institute im Konsensverfahren ausgewählt. Scoring-Intervalle für einen aggregierten PI-RADS-Score wurden ebenfalls im Konsensus festgelegt.

Ergebnisse: Die multiparametrischen Methoden wurden hinsichtlich Durchführung und aktuellem Stellenwert kritisch erörtert. Ebenso wurden die beschriebenen Kriterien der einzelnen multiparametrischen Ausprägungen der PI-RADS-Klassifikation anhand einer schematischen Übersicht konkretisiert. Für die klinische Arbeit wird empfohlen, anhand der erstellten Scoringtabelle ab einem PI-RADS-Score von 4 (≥ 10 Punkte bei Vorliegen von 3 Methoden und ≥ 13 Punkte bei Vorliegen von 4 Methoden) den Verdacht auf ein Prostatakarzinom zu stellen. Abschließend wurde eine grafische Befundvorlage zur Befundübermittlung erarbeitet.

Schlussfolgerung: Die strukturierte Befundung anhand der ESUR-Leitlinie trägt durch Standardisierung und Vereinheitlichung zur Qualitätssicherung eines radiologischen Verfahrens bei und vereinfacht die Befundübermittlung an den Urologen.

Abstract

Purpose: To flesh out the ESUR guidelines for the standardized interpretation of multiparametric magnetic resonance imaging (mMRI) for the detection of prostate cancer and to present a graphic reporting scheme for improved communication of findings to urologists.

Materials and Methods: The ESUR has recently published a structured reporting system for mMRI of the prostate (PI-RADS). This system involves the use of 5-point Likert scales for grading the findings obtained with different MRI techniques. The mMRI includes T2-weighted MRI, diffusion-weighted imaging, dynamic contrast-enhanced MRI, and MR spectroscopy. In a first step, the fundamentals of technical implementation were determined by consensus, taking into account in particular the German-speaking community. Then, representative images were selected by consensus on the basis of examinations of the three institutions. In addition, scoring intervals for an aggregated PI-RADS score were determined in consensus.

Results: The multiparametric methods were discussed critically with regard to implementation and the current status. Criteria used for grading mMRI findings with the PI-RADS classification were concretized by succinct examples. Using the consensus table for aggregated scoring in a clinical setting, a diagnosis of suspected prostate cancer should be made if the PI-RADS score is 4 or higher (≥ 10 points if 3 techniques are used or ≥ 13 points if 4 techniques are used). Finally, a graphic scheme was developed for communicating mMRI prostate findings.

Conclusion: Structured reporting according to the ESUR guidelines contributes to quality assurance by standardizing prostate mMRI, and it facilities the communication of findings to urologists.

 
  • Literatur

  • 1 Schlemmer HP. Multiparametric MRI of the prostate: method for early detection of prostate cancer?. Fortschr Röntgenstr 2010; 182: 1067-1075
  • 2 Franiel T. Multiparametric magnetic resonance imaging of the prostate – technique and clinical applications. Fortschr Röntgenstr 2011; 183: 607-617
  • 3 Barentsz JO, Richenberg J, Clements R et al. ESUR prostate MR guidelines 2012. Eur Radiol 2012; 22: 746-757
  • 4 Dickinson L, Ahmed HU, Allen C et al. Magnetic resonance imaging for the detection, localisation, and characterisation of prostate cancer: recommendations from a European consensus meeting. European urology 2011; 59: 477-494
  • 5 Krebsgesellschaft D. Interdisziplinäre Leitlinie der Qualität S3 zur Früherkennung, Diagnose und Therapie der verschiedenen Stadien des Prostatakarzinoms. 2011;
  • 6 Wagner M, Rief M, Busch J et al. Effect of butylscopolamine on image quality in MRI of the prostate. Clin Radiol 2010; 65: 460-464
  • 7 Roethke MC, Lichy MP, Jurgschat L et al. Tumorsize dependent detection rate of endorectal MRI of prostate cancer – a histopathologic correlation with whole-mount sections in 70 patients with prostate cancer. Eur J Radiol 2011; 79: 189-195
  • 8 Akin O, Sala E, Moskowitz CS et al. Transition zone prostate cancers: features, detection, localization, and staging at endorectal MR imaging. Radiology 2006; 239: 784-792
  • 9 Janus C, Lippert M. Benign prostatic hyperplasia: appearance on magnetic resonance imaging. Urology 1992; 40: 539-541
  • 10 Oto A, Kayhan A, Jiang Y et al. Prostate cancer: differentiation of central gland cancer from benign prostatic hyperplasia by using diffusion-weighted and dynamic contrast-enhanced MR imaging. Radiology 2010; 257: 715-723
  • 11 Wang L, Mazaheri Y, Zhang J et al. Assessment of biologic aggressiveness of prostate cancer: correlation of MR signal intensity with Gleason grade after radical prostatectomy. Radiology 2008; 246: 168-176
  • 12 Hricak H. Imaging prostate cancer. J Urol 1999; 162: 1329-1330
  • 13 Kim CK, Park BK, Kim B. Localization of prostate cancer using 3T MRI: comparison of T2-weighted and dynamic contrast-enhanced imaging. J Comput Assist Tomogr 2006; 30: 7-11
  • 14 Beyersdorff D, Taymoorian K, Knosel T et al. MRI of prostate cancer at 1.5 and 3.0 T: comparison of image quality in tumor detection and staging. Am J Roentgenol 2005; 185: 1214-1220
  • 15 Roethke MC, Lichy MP, Kniess M et al. Accuracy of preoperative endorectal MRI in predicting extracapsular extension and influence on neurovascular bundle sparing in radical prostatectomy. World J Urol 2012;
  • 16 Zelhof B, Pickles M, Liney G et al. Correlation of diffusion-weighted magnetic resonance data with cellularity in prostate cancer. BJU Int 2009; 103: 883-888
  • 17 Sato C, Naganawa S, Nakamura T et al. Differentiation of noncancerous tissue and cancer lesions by apparent diffusion coefficient values in transition and peripheral zones of the prostate. J Magn Reson Imaging 2005; 21: 258-262
  • 18 Mulkern RV, Barnes AS, Haker SJ et al. Biexponential characterization of prostate tissue water diffusion decay curves over an extended b-factor range. Magn Reson Imaging 2006; 24: 563-568
  • 19 Quentin M, Blondin D, Klasen J et al. Comparison of different mathematical models of diffusion-weighted prostate MR imaging. Magnetic resonance imaging 2012;
  • 20 Le Bihan D, Breton E, Lallemand D et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988; 168: 497-505
  • 21 Yablonskiy DA, Bretthorst GL, Ackerman JJH. Statistical model for diffusion attenuated MR signal. Magn Reson Med 2003; 50: 664-669
  • 22 Jensen JH, Helpern JA, Ramani A et al. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 2005; 53: 1432-1440
  • 23 Haider MA, van der Kwast TH, Tanguay J et al. Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer. Am J Roentgenol 2007; 189: 323-328
  • 24 Pickles MD, Gibbs P, Sreenivas M et al. Diffusion-weighted imaging of normal and malignant prostate tissue at 3.0T. J Magn Reson Imaging 2006; 23: 130-134
  • 25 Ren J, Huan Y, Wang H et al. Diffusion-weighted imaging in normal prostate and differential diagnosis of prostate diseases. Abdom Imaging 2008; 33: 724-728
  • 26 Kim CK, Park BK, Kim B. High-b-value diffusion-weighted imaging at 3 T to detect prostate cancer: comparisons between b values of 1,000 and 2,000 s/mm2. Am J Roentgenol 2010; 194: 33-37
  • 27 Mueller-Lisse UG, Mueller-Lisse UL, Zamecnik P et al. Diffusion-weighted MRI of the prostate. Radiologe 2011; 51: 205-214
  • 28 Katahira K, Takahara T, Kwee TC et al. Ultra-high-b-value diffusion-weighted MR imaging for the detection of prostate cancer: evaluation in 201 cases with histopathological correlation. Eur Radiol 2011; 21: 188-196
  • 29 Kitajima K, Takahashi S, Ueno Y et al. Clinical utility of apparent diffusion coefficient values obtained using high b-value when diagnosing prostate cancer using 3 tesla MRI: Comparison between ultra-high b-value (2000 s/mm2) and standard high b-value (1000 s/mm2). J Magn Reson Imaging 2012;
  • 30 Woodfield CA, Tung GA, Grand DJ et al. Diffusion-weighted MRI of peripheral zone prostate cancer: comparison of tumor apparent diffusion coefficient with Gleason score and percentage of tumor on core biopsy. Am J Roentgenol 2010; 194: 316-322
  • 31 Vargas HA, Akin O, Franiel T et al. Diffusion-weighted endorectal MR imaging at 3 T for prostate cancer: tumor detection and assessment of aggressiveness. Radiology 2011; 259: 775-784
  • 32 Franiel T, Hamm B, Hricak H. Dynamic contrast-enhanced magnetic resonance imaging and pharmacokinetic models in prostate cancer. Eur Radiol 2011; 21: 616-626
  • 33 Huisman HJ, Engelbrecht MR, Barentsz JO. Accurate estimation of pharmacokinetic contrast-enhanced dynamic MRI parameters of the prostate. J Magn Reson Imaging 2001; 13: 607-614
  • 34 Tofts PS, Brix G, Buckley DL et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 1999; 10: 223-232
  • 35 Beyersdorff D, Ludemann L, Dietz E et al. Dynamic contrast-enhanced MRI of the prostate: comparison of two different post-processing algorithms. Fortschr Röntgenstr 2011; 183: 456-461
  • 36 Franiel T, Stephan C, Erbersdobler A et al. Areas Suspicious for Prostate Cancer: MR-guided Biopsy in Patients with at Least One Transrectal US-guided Biopsy with a Negative Finding – Multiparametric MR Imaging for Detection and Biopsy Planning. Radiology 2011;
  • 37 Ocak I, Bernardo M, Metzger G et al. Dynamic contrast-enhanced MRI of prostate cancer at 3 T: a study of pharmacokinetic parameters. Am J Roentgenol 2007; 189: 849
  • 38 Sciarra A, Panebianco V, Ciccariello M et al. Value of magnetic resonance spectroscopy imaging and dynamic contrast-enhanced imaging for detecting prostate cancer foci in men with prior negative biopsy. Clin Cancer Res 2010; 16: 1875-1883
  • 39 Engelbrecht MR, Huisman HJ, Laheij RJ et al. Discrimination of prostate cancer from normal peripheral zone and central gland tissue by using dynamic contrast-enhanced MR imaging. Radiology 2003; 229: 248-254
  • 40 Padhani AR, Gapinski CJ, Macvicar DA et al. Dynamic contrast enhanced MRI of prostate cancer: correlation with morphology and tumour stage, histological grade and PSA. Clin Radiol 2000; 55: 99-109
  • 41 Schlemmer HP, Merkle J, Grobholz R et al. Can pre-operative contrast-enhanced dynamic MR imaging for prostate cancer predict microvessel density in prostatectomy specimens?. Eur Radiol 2004; 14: 309-317
  • 42 Franiel T, Lüdemann L, Rudolph B et al. Evaluation of normal prostate tissue, chronic prostatitis, and prostate cancer by quantitative perfusion analysis using a dynamic contrast-enhanced inversion-prepared dual-contrast gradient echo sequence. Invest Radiol 2008; 43: 481-487
  • 43 Franiel T, Lüdemann L, Taupitz M et al. Pharmacokinetic MRI of the Prostate: Parameters for Differentiating Low-Grade and High-Grade Prostate Cancer. Fortschr Röntgenstr 2009; 181: 536-542
  • 44 Shukla-Dave A, Hricak H, Ishill NM et al. Correlation of MR imaging and MR spectroscopic imaging findings with Ki-67, phospho-Akt, and androgen receptor expression in prostate cancer. Radiology 2009; 250: 803-812
  • 45 Mueller-Lisse UG, Swanson MG, Vigneron DB et al. Magnetic resonance spectroscopy in patients with locally confined prostate cancer: association of prostatic citrate and metabolic atrophy with time on hormone deprivation therapy, PSA level, and biopsy Gleason score. Eur Radiol 2007; 17: 371-378
  • 46 Fradet V, Kurhanewicz J, Cowan JE et al. Prostate cancer managed with active surveillance: role of anatomic MR imaging and MR spectroscopic imaging. Radiology 2010; 256: 176-183
  • 47 Verma S, Rajesh A, Futterer JJ et al. Prostate MRI and 3D MR spectroscopy: how we do it. Am J Roentgenol 2010; 194: 1414-1426
  • 48 Hoeks CMA, Barentsz JO, Hambrock T et al. Prostate cancer: multiparametric MR imaging for detection, localization, and staging. Radiology 2011; 261: 46-66
  • 49 Scheenen TWJ, Futterer J, Weiland E et al. Discriminating cancer from noncancer tissue in the prostate by 3-dimensional proton magnetic resonance spectroscopic imaging: a prospective multicenter validation study. Invest Radiol 2011; 46: 25-33
  • 50 Weinreb JC, Blume JD, Coakley FV et al. Prostate cancer: sextant localization at MR imaging and MR spectroscopic imaging before prostatectomy – results of ACRIN prospective multi-institutional clinicopathologic study. Radiology 2009; 251: 122-133
  • 51 Futterer JJ, Scheenen TWJ, Heijmink SWTPJ et al. Standardized threshold approach using three-dimensional proton magnetic resonance spectroscopic imaging in prostate cancer localization of the entire prostate. Invest Radiol 2007; 42: 116-122
  • 52 Jung JA, Coakley FV, Vigneron DB et al. Prostate depiction at endorectal MR spectroscopic imaging: investigation of a standardized evaluation system. Radiology 2004; 233: 701-708