Aktuelle Ernährungsmedizin 2013; 38(S 01): S7-S11
DOI: 10.1055/s-0032-1332815
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Nährstoffe als Lehrmeister

Einfluss der Nahrung auf die Regulation der GenexpressionNutrients as MastersThe Influence of Food on the Regulation of Gene Expression
B. L. Bader
Klinische Ernährungsmedizin, Zentralinstitut für Ernährungs- und Lebensmittelforschung (ZIEL), Else Kröner-Fresenius-Zentrum für Ernährungsmedizin, Technische Universität München, Freising-Weihenstephan
› Author Affiliations
Further Information

Publication History

Publication Date:
12 March 2013 (online)

Zusammenfassung

Nahrungsinhaltsstoffe können epigenetische Mechanismen in Zellen auf unterschiedliche Weise beeinflussen. Fettsäuren und deren Metabolite und andere Wirkstoffe wie Vitamin D bewirken über die Bindung an Kernrezeptoren eine vielschichtige Regulation der Genexpression, die auch an Tochterzellen bzw. nachfolgende Zellen weitergegeben werden kann. Dabei verhindern oder verbessern epigenetische Markierungen im Chromatin den Zugang zum Genregulationsschalter. Epigenetische Aktivitäten können durch den Energiezustand in der Zelle beeinflusst werden. Sirtuine mit Histondeacetylaseaktivität sind z. B. unter Energierestriktion bzw. unter dem Einfluss anderer Stoffe wie Resveratrol hochaktiv. Infolgedessen wird die Verpackung des Genoms (Chromatin) kompakter und die Genexpression möglicherweise so reduziert, um Vorgänge so auszurichten, die zur Langlebigkeit beitragen.

Von zentraler Bedeutung in der Epigenetik ist S-Adenosyl-Methionin (SAM), das als Methylgruppenträger für epigenetische DNA- und Histon-Methylierungen dient. Diese epigenetischen Markierungen verändern die Chromatinstruktur und infolgedessen die Genaktivität. Methylreiche Diäten mit Folat, Betain und Cholin während der Trächtigkeit führten im Agoutivy-Mausmodell in der Folgegeneration F1 zu veränderten Methylierungsmustern in bestimmten DNA-Abschnitten, die den Phänotyp der Nachkommen veränderten und die Adipositasneigung reduzierten. Die epigenetische Forschung sucht künftig auch im Humangenom nach metastabilen Veränderungen an den Genen (Epiallele), die auf Umweltfaktoren wie Nahrung, Stress, Toxine oder Verhalten ansprechen.

Abstract

Food ingredients can affect epigenetic mechanisms in cells in different ways. Fatty acids and their metabolites, and other active substances such as vitamin D ensure by binding to nuclear receptors a complex regulation of gene expression, which can also be passed on to daughter cells or subsequent cells. In this process, epigenetic markings in the chromatin inhibit or improve access to the gene regulation switch. Epigenetic activities can be influenced by a cell’s energy status. Sirtuin proteins with histone deacetylase activity are highly active under conditions of restricted energy, for example, or under the influence of other substances such as resveratrol. As a result the packaging of the genome (chromatin) becomes more compact and the gene expression potentially reduced to such an extent that it directs processes in such a way that they contribute to longevity.

S-adenosyl-methionine (SAM), which is a methyl group carrier for epigenetic DNA and histone methylations, is of central importance in epigenetics. These epigenetic markings change the chromatin structure and thus the gene activity. Methyl-rich diets with folate, betaine, and choline during pregnancy in the Agoutivy mouse model in the F1-generation led to changed methylation patterns in certain DNA segments, which changed the offspring’s phenotype and reduced the tendency to obesity. Future epigenetic research will look for metastable changes at genes (epialleles) in the human genome, which respond to environmental factors, such as nutrition, stress, toxins, or behaviors.

 
  • Literatur

  • 1 Maston GA, Evans SK, Green MR. Transcriptional regulatory elements in the human genome. Annu Rev Genomics Hum Genet 2006; 7: 29-59
  • 2 Varga-Weisz PD, Becker PB. Regulation of higher-order chromatin structures by nucleosome-remodelling factors. Curr Opin Genet Dev 2006; 16: 151-156
  • 3 Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu Rev Biochem 2005; 74: 481-514
  • 4 Groth A, Rocha W, Verreault A et al. Chromatin challenges during DNA replication and repair. Cell 2007; 128: 721-733
  • 5 Mahmoudi T, Verrijzer CP. Chromatin silencing and activation by Polycomb and trithorax group proteins. Oncogene 2001; 20: 3055-3066
  • 6 Wysocka J, Allis CD, Coonrod S. Histone arginine methylation and its dynamic regulation. Front Biosci 2006; 11: 344-355
  • 7 Schuettengruber B, Chourrout D, Vervoort M et al. Genome regulation by polycomb and trithorax proteins. Cell 2007; 128: 735-745
  • 8 Dahlhoff C, Fürst RW, Ruhlig K et al. Epigenetik und Ernährung. Ernährung 2008; 2: 116-124
  • 9 Allis CD, Jenuwein R, Reinberg D. Epigenetics. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press; 2007
  • 10 Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev 2003; 24: 78-90
  • 11 Wagner KD, Wagner N. Peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) acts as regulator of metabolism linked to multiple cellular functions. Pharmacol Ther 2010; 125: 423-435 (Epub 2009 Dec 22)
  • 12 Hauner H, Vollhardt C, Schneider KT et al. The impact of nutritional fatty acids during pregnancy and lactation on early human adipose tissue development. Rationale and design of the INFAT study. Ann Nutr Metab 2009; 54: 97-103
  • 13 Hauner H, Much D, Vollhardt C et al. Effect of reducing the n-6:n-3 long-chain PUFA ratio during pregnancy and lactation on infant adipose tissue growth within the first year of life: an open-label randomized controlled trial. Am J Clin Nutr 2012; 95: 383-394
  • 14 Lillycrop KA, Phillips ES, Jackson AA et al. Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr 2005; 135: 1382-1386
  • 15 Lillycrop K, Slater-Jeffries J, Hanson M et al. Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein restricted diet during pregnancy suggest that reduced DNA methyltransferease-1 expression is involved in impaired DNA methylation and changes in histone modifications. Br J Nutr 2007; 97: 1064-1073
  • 16 Burdge G, Slater-Jefferies J, Torrens C et al. Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic genes promoters in the adult male offsprings in the F1and F2 generations. Br J Nutr 2007; 97: 439-453
  • 17 Bordone L, Guarente L. Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol 2005; 6: 298-305
  • 18 Niculescu MD, Zeisel SH. Diet, methyl donors and DNA methylation: interactions between dietary folate, methionine and choline. J Nutr 2002; 132: 2333S-2335S
  • 19 Davis CD, Uthus EO. DNA methylation, cancer susceptibility, and nutrient interactions. Exp Biol Med (Maywood) 2004; 229: 988-995
  • 20 Cooney CA, Dave AA, Wolff GL. Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr 2002; 132: 2393S-2400S
  • 21 Cropley JE, Suter CM, Beckman KB et al. Germ-line epigenetic modification of the murine A vy allele by nutritional supplementation. Proc Natl Acad Sci U S A 2006; 103: 17308-17312
  • 22 Waterland RA, Jirtle RL. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 2003; 23: 5293-5300
  • 23 Waterland RA. Epigenetic mechanisms and gastrointestinal development. J Pediatr 2006; 149: S137-S142
  • 24 Wolff GL, Kodell RL, Moore SR et al. Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J 1998; 12: 949-957
  • 25 Dolinoy DC, Huang D, Jirtle RL. Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci USA 2007; 7; 104: 13056-13061
  • 26 Waterland RA, Kellermayer R, Laritsky E et al. Season of conception in rural gambia affects DNA methylation at putative human metastable epialleles. PLoS Genet 2010; 6: e1001252