Semin Thromb Hemost 2013; 39(04): 347-355
DOI: 10.1055/s-0033-1334485
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Urokinase Plasminogen Activator Receptor: A Functional Integrator of Extracellular Proteolysis, Cell Adhesion, and Signal Transduction

Gian Maria Sarra Ferraris
1   Cell Matrix Signaling Unit, IFOM the FIRC Institute of Molecular Oncology, Milan, Italy
,
Nicolai Sidenius
1   Cell Matrix Signaling Unit, IFOM the FIRC Institute of Molecular Oncology, Milan, Italy
› Author Affiliations
Further Information

Publication History

Publication Date:
26 March 2013 (online)

Abstract

The urokinase plasminogen activator receptor (uPAR) is a cell surface receptor involved in a multitude of physiologic and pathologic processes. uPAR regulates simultaneously a branch of the plasminogen activator system and modulates cell adhesion and intracellular signaling by interacting with extracellular matrix components and signaling receptors. The multiple uPAR functions are deeply interconnected, and their integration determines the effects that uPAR expression triggers in different contexts. The proteolytic function of uPAR affects both the signaling and the adhesive functions of the receptor, whereas these latter two are closely interconnected. This review focuses on the molecular mechanisms that connect and mutually regulate the different uPAR functions.

 
  • References

  • 1 Andronicos NM, Chen EI, Baik N , et al. Proteomics-based discovery of a novel, structurally unique, and developmentally regulated plasminogen receptor, Plg-RKT, a major regulator of cell surface plasminogen activation. Blood 2010; 115 (7) 1319-1330
  • 2 Ellis V, Behrendt N, Danø K. Plasminogen activation by receptor-bound urokinase. A kinetic study with both cell-associated and isolated receptor. J Biol Chem 1991; 266 (19) 12752-12758
  • 3 Bugge TH, Kombrinck KW, Flick MJ, Daugherty CC, Danton MJ, Degen JL. Loss of fibrinogen rescues mice from the pleiotropic effects of plasminogen deficiency. Cell 1996; 87 (4) 709-719
  • 4 Carmeliet P, Moons L, Lijnen R , et al. Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation. Nat Genet 1997; 17 (4) 439-444
  • 5 Estreicher A, Mühlhauser J, Carpentier JL, Orci L, Vassalli JD. The receptor for urokinase type plasminogen activator polarizes expression of the protease to the leading edge of migrating monocytes and promotes degradation of enzyme inhibitor complexes. J Cell Biol 1990; 111 (2) 783-792
  • 6 Connolly BM, Choi EY, Gårdsvoll H , et al. Selective abrogation of the uPA-uPAR interaction in vivo reveals a novel role in suppression of fibrin-associated inflammation. Blood 2010; 116 (9) 1593-1603
  • 7 Cubellis MV, Wun TC, Blasi F. Receptor-mediated internalization and degradation of urokinase is caused by its specific inhibitor PAI-1. EMBO J 1990; 9 (4) 1079-1085
  • 8 Nykjaer A, Conese M, Christensen EI , et al. Recycling of the urokinase receptor upon internalization of the uPA:serpin complexes. EMBO J 1997; 16 (10) 2610-2620
  • 9 Hayman EG, Pierschbacher MD, Ohgren Y, Ruoslahti E. Serum spreading factor (vitronectin) is present at the cell surface and in tissues. Proc Natl Acad Sci U S A 1983; 80 (13) 4003-4007
  • 10 Seiffert D, Loskutoff DJ. Evidence that type 1 plasminogen activator inhibitor binds to the somatomedin B domain of vitronectin. J Biol Chem 1991; 266 (5) 2824-2830
  • 11 Deng G, Curriden SA, Wang S, Rosenberg S, Loskutoff DJ. Is plasminogen activator inhibitor-1 the molecular switch that governs urokinase receptor-mediated cell adhesion and release?. J Cell Biol 1996; 134 (6) 1563-1571
  • 12 Moser TL, Enghild JJ, Pizzo SV, Stack MS. Specific binding of urinary-type plasminogen activator (u-PA) to vitronectin and its role in mediating u-PA-dependent adhesion of U937 cells. Biochem J 1995; 307 (Pt 3) 867-873
  • 13 Preissner KT. Specific binding of plasminogen to vitronectin. Evidence for a modulatory role of vitronectin on fibrin(ogen)-induced plasmin formation by tissue plasminogen activator. Biochem Biophys Res Commun 1990; 168 (3) 966-971
  • 14 Zheng X, Saunders TL, Camper SA, Samuelson LC, Ginsburg D. Vitronectin is not essential for normal mammalian development and fertility. Proc Natl Acad Sci U S A 1995; 92 (26) 12426-12430
  • 15 Dewerchin M, Nuffelen AV, Wallays G , et al. Generation and characterization of urokinase receptor-deficient mice. J Clin Invest 1996; 97 (3) 870-878
  • 16 Waltz DA, Sailor LZ, Chapman HA. Cytokines induce urokinase-dependent adhesion of human myeloid cells. A regulatory role for plasminogen activator inhibitors. J Clin Invest 1993; 91 (4) 1541-1552
  • 17 Waltz DA, Chapman HA. Reversible cellular adhesion to vitronectin linked to urokinase receptor occupancy. J Biol Chem 1994; 269 (20) 14746-14750
  • 18 Wei Y, Waltz DA, Rao N, Drummond RJ, Rosenberg S, Chapman HA. Identification of the urokinase receptor as an adhesion receptor for vitronectin. J Biol Chem 1994; 269 (51) 32380-32388
  • 19 Sidenius N, Andolfo A, Fesce R, Blasi F. Urokinase regulates vitronectin binding by controlling urokinase receptor oligomerization. J Biol Chem 2002; 277 (31) 27982-27990
  • 20 Gårdsvoll H, Ploug M. Mapping of the vitronectin-binding site on the urokinase receptor: involvement of a coherent receptor interface consisting of residues from both domain I and the flanking interdomain linker region. J Biol Chem 2007; 282 (18) 13561-13572
  • 21 Xu X, Gårdsvoll H, Yuan C, Lin L, Ploug M, Huang M. Crystal structure of the urokinase receptor in a ligand-free form. J Mol Biol 2012; 416 (5) 629-641
  • 22 Mertens HD, Kjaergaard M, Mysling S , et al. A flexible multidomain structure drives the function of the urokinase-type plasminogen activator receptor (uPAR). J Biol Chem 2012; 287 (41) 34304-34315
  • 23 Cunningham O, Andolfo A, Santovito ML, Iuzzolino L, Blasi F, Sidenius N. Dimerization controls the lipid raft partitioning of uPAR/CD87 and regulates its biological functions. EMBO J 2003; 22 (22) 5994-6003
  • 24 Caiolfa VR, Zamai M, Malengo G , et al. Monomer dimer dynamics and distribution of GPI-anchored uPAR are determined by cell surface protein assemblies. J Cell Biol 2007; 179 (5) 1067-1082
  • 25 Deng G, Royle G, Wang S, Crain K, Loskutoff DJ. Structural and functional analysis of the plasminogen activator inhibitor-1 binding motif in the somatomedin B domain of vitronectin. J Biol Chem 1996; 271 (22) 12716-12723
  • 26 Kiyan J, Kiyan R, Haller H, Dumler I. Urokinase-induced signaling in human vascular smooth muscle cells is mediated by PDGFR-beta. EMBO J 2005; 24 (10) 1787-1797
  • 27 Liu D, Aguirre Ghiso J, Estrada Y, Ossowski L. EGFR is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of a human carcinoma. Cancer Cell 2002; 1 (5) 445-457
  • 28 Eastman BM, Jo M, Webb DL, Takimoto S, Gonias SL. A transformation in the mechanism by which the urokinase receptor signals provides a selection advantage for estrogen receptor-expressing breast cancer cells in the absence of estrogen. Cell Signal 2012; 24 (9) 1847-1855
  • 29 Jo M, Thomas KS, O'Donnell DM, Gonias SL. Epidermal growth factor receptor-dependent and -independent cell-signaling pathways originating from the urokinase receptor. J Biol Chem 2003; 278 (3) 1642-1646
  • 30 Guerrero J, Santibañez JF, González A, Martínez J. EGF receptor transactivation by urokinase receptor stimulus through a mechanism involving Src and matrix metalloproteinases. Exp Cell Res 2004; 292 (1) 201-208
  • 31 D'Alessio S, Gerasi L, Blasi F. uPAR-deficient mouse keratinocytes fail to produce EGFR-dependent laminin-5, affecting migration in vivo and in vitro. J Cell Sci 2008; 121 (Pt 23) 3922-3932
  • 32 Jo M, Thomas KS, Takimoto S , et al. Urokinase receptor primes cells to proliferate in response to epidermal growth factor. Oncogene 2007; 26 (18) 2585-2594
  • 33 Resnati M, Guttinger M, Valcamonica S, Sidenius N, Blasi F, Fazioli F. Proteolytic cleavage of the urokinase receptor substitutes for the agonist-induced chemotactic effect. EMBO J 1996; 15 (7) 1572-1582
  • 34 Fazioli F, Resnati M, Sidenius N, Higashimoto Y, Appella E, Blasi F. A urokinase-sensitive region of the human urokinase receptor is responsible for its chemotactic activity. EMBO J 1997; 16 (24) 7279-7286
  • 35 Ragno P. The urokinase receptor: a ligand or a receptor? Story of a sociable molecule. Cell Mol Life Sci 2006; 63 (9) 1028-1037
  • 36 Høyer-Hansen G, Ploug M, Behrendt N, Rønne E, Danø K. Cell-surface acceleration of urokinase-catalyzed receptor cleavage. Eur J Biochem 1997; 243 (1-2) 21-26
  • 37 Høyer-Hansen G, Pessara U, Holm A , et al. Urokinase-catalysed cleavage of the urokinase receptor requires an intact glycolipid anchor. Biochem J 2001; 358 (Pt 3) 673-679
  • 38 Montuori N, Carriero MV, Salzano S, Rossi G, Ragno P. The cleavage of the urokinase receptor regulates its multiple functions. J Biol Chem 2002; 277 (49) 46932-46939
  • 39 Montuori N, Bifulco K, Carriero MV , et al. The cross-talk between the urokinase receptor and fMLP receptors regulates the activity of the CXCR4 chemokine receptor. Cell Mol Life Sci 2011; 68 (14) 2453-2467
  • 40 Selleri C, Montuori N, Ricci P , et al. Involvement of the urokinase-type plasminogen activator receptor in hematopoietic stem cell mobilization. Blood 2005; 105 (5) 2198-2205
  • 41 Bass R, Ellis V. Regulation of urokinase receptor function and pericellular proteolysis by the integrin alpha(5)beta(1). Thromb Haemost 2009; 101 (5) 954-962
  • 42 Madsen CD, Ferraris GM, Andolfo A, Cunningham O, Sidenius N. uPAR-induced cell adhesion and migration: vitronectin provides the key. J Cell Biol 2007; 177 (5) 927-939
  • 43 Xue W, Kindzelskii AL, Todd III RF, Petty HR. Physical association of complement receptor type 3 and urokinase-type plasminogen activator receptor in neutrophil membranes. J Immunol 1994; 152 (9) 4630-4640
  • 44 Bohuslav J, Horejsí V, Hansmann C , et al. Urokinase plasminogen activator receptor, beta 2-integrins, and Src-kinases within a single receptor complex of human monocytes. J Exp Med 1995; 181 (4) 1381-1390
  • 45 Simon DI, Rao NK, Xu H , et al. Mac-1 (CD11b/CD18) and the urokinase receptor (CD87) form a functional unit on monocytic cells. Blood 1996; 88 (8) 3185-3194
  • 46 Gyetko MR, Todd III RF, Wilkinson CC, Sitrin RG. The urokinase receptor is required for human monocyte chemotaxis in vitro. J Clin Invest 1994; 93 (4) 1380-1387
  • 47 Wei Y, Czekay RP, Robillard L , et al. Regulation of alpha5beta1 integrin conformation and function by urokinase receptor binding. J Cell Biol 2005; 168 (3) 501-511
  • 48 Wei Y, Tang CH, Kim Y , et al. Urokinase receptors are required for alpha 5 beta 1 integrin-mediated signaling in tumor cells. J Biol Chem 2007; 282 (6) 3929-3939
  • 49 Chaurasia P, Aguirre-Ghiso JA, Liang OD, Gardsvoll H, Ploug M, Ossowski L. A region in urokinase plasminogen receptor domain III controlling a functional association with alpha5beta1 integrin and tumor growth. J Biol Chem 2006; 281 (21) 14852-14863
  • 50 Wei Y, Lukashev M, Simon DI , et al. Regulation of integrin function by the urokinase receptor. Science 1996; 273 (5281) 1551-1555
  • 51 Wei Y, Eble JA, Wang Z, Kreidberg JA, Chapman HA. Urokinase receptors promote beta1 integrin function through interactions with integrin alpha3beta1. Mol Biol Cell 2001; 12 (10) 2975-2986
  • 52 Zhang F, Tom CC, Kugler MC , et al. Distinct ligand binding sites in integrin alpha3beta1 regulate matrix adhesion and cell-cell contact. J Cell Biol 2003; 163 (1) 177-188
  • 53 Wei C, Möller CC, Altintas MM , et al. Modification of kidney barrier function by the urokinase receptor. Nat Med 2008; 14 (1) 55-63
  • 54 Smith HW, Marra P, Marshall CJ. uPAR promotes formation of the p130Cas-Crk complex to activate Rac through DOCK180. J Cell Biol 2008; 182 (4) 777-790
  • 55 Nguyen DH, Catling AD, Webb DJ , et al. Myosin light chain kinase functions downstream of Ras/ERK to promote migration of urokinase-type plasminogen activator-stimulated cells in an integrin-selective manner. J Cell Biol 1999; 146 (1) 149-164
  • 56 Kjøller L, Hall A. Rac mediates cytoskeletal rearrangements and increased cell motility induced by urokinase-type plasminogen activator receptor binding to vitronectin. J Cell Biol 2001; 152 (6) 1145-1157
  • 57 Furlan F, Galbiati C, Jorgensen NR , et al. Urokinase plasminogen activator receptor affects bone homeostasis by regulating osteoblast and osteoclast function. J Bone Miner Res 2007; 22 (9) 1387-1396
  • 58 Edwards S, Lalor PF, Tuncer C, Adams DH. Vitronectin in human hepatic tumours contributes to the recruitment of lymphocytes in an alpha v beta3-independent manner. Br J Cancer 2006; 95 (11) 1545-1554
  • 59 Hillig T, Engelholm LH, Ingvarsen S , et al. A composite role of vitronectin and urokinase in the modulation of cell morphology upon expression of the urokinase receptor. J Biol Chem 2008; 283 (22) 15217-15223
  • 60 Gårdsvoll H, Kjaergaard M, Jacobsen B, Kriegbaum MC, Huang M, Ploug M. Mimicry of the regulatory role of urokinase in lamellipodia formation by introduction of a non-native interdomain disulfide bond in its receptor. J Biol Chem 2011; 286 (50) 43515-43526
  • 61 Bifulco K, Longanesi-Cattani I, Franco P , et al. Single amino acid substitutions in the chemotactic sequence of urokinase receptor modulate cell migration and invasion. PLoS ONE 2012; 7 (9) e44806
  • 62 Bershadsky A, Kozlov M, Geiger B. Adhesion-mediated mechanosensitivity: a time to experiment, and a time to theorize. Curr Opin Cell Biol 2006; 18 (5) 472-481
  • 63 Ciambrone GJ, McKeown-Longo PJ. Vitronectin regulates the synthesis and localization of urokinase-type plasminogen activator in HT-1080 cells. J Biol Chem 1992; 267 (19) 13617-13622
  • 64 Wilcox SA, Reho T, Higgins PJ, Tominna-Sebald E, McKeown-Longo PJ. Localization of urokinase to focal adhesions by human fibrosarcoma cells synthesizing recombinant vitronectin. Biochem Cell Biol 1996; 74 (6) 899-910
  • 65 Salasznyk RM, Zappala M, Zheng M, Yu L, Wilkins-Port C, McKeown-Longo PJ. The uPA receptor and the somatomedin B region of vitronectin direct the localization of uPA to focal adhesions in microvessel endothelial cells. Matrix Biol 2007; 26 (5) 359-370
  • 66 Høyer-Hansen G, Rønne E, Solberg H , et al. Urokinase plasminogen activator cleaves its cell surface receptor releasing the ligand-binding domain. J Biol Chem 1992; 267 (25) 18224-18229
  • 67 Koolwijk P, Sidenius N, Peters E , et al. Proteolysis of the urokinase-type plasminogen activator receptor by metalloproteinase-12: implication for angiogenesis in fibrin matrices. Blood 2001; 97 (10) 3123-3131
  • 68 Andolfo A, English WR, Resnati M, Murphy G, Blasi F, Sidenius N. Metalloproteases cleave the urokinase-type plasminogen activator receptor in the D1-D2 linker region and expose epitopes not present in the intact soluble receptor. Thromb Haemost 2002; 88 (2) 298-306
  • 69 Høyer-Hansen G, Ploug M, Behrendt N, Rønne E, Danø K. Cell-surface acceleration of urokinase-catalyzed receptor cleavage. Eur J Biochem 1997; 243 (1-2) 21-26
  • 70 Høyer-Hansen G, Rønne E, Solberg H , et al. Urokinase plasminogen activator cleaves its cell surface receptor releasing the ligand-binding domain. J Biol Chem 1992; 267 (25) 18224-18229
  • 71 Margheri F, Manetti M, Serratì S , et al. Domain 1 of the urokinase-type plasminogen activator receptor is required for its morphologic and functional, beta2 integrin-mediated connection with actin cytoskeleton in human microvascular endothelial cells: failure of association in systemic sclerosis endothelial cells. Arthritis Rheum 2006; 54 (12) 3926-3938
  • 72 Montuori N, Cosimato V, Rinaldi L, Rea VE, Alfano D, Ragno P. uPAR regulates pericellular proteolysis through a mechanism involving integrins and fMLF-receptors. Thromb Haemost 2012; 109 (2) 109
  • 73 Degryse B, Resnati M, Czekay RP, Loskutoff DJ, Blasi F. Domain 2 of the urokinase receptor contains an integrin-interacting epitope with intrinsic signaling activity: generation of a new integrin inhibitor. J Biol Chem 2005; 280 (26) 24792-24803
  • 74 Simon DI, Wei Y, Zhang L , et al. Identification of a urokinase receptor-integrin interaction site. Promiscuous regulator of integrin function. J Biol Chem 2000; 275 (14) 10228-10234
  • 75 Tarui T, Andronicos N, Czekay RP , et al. Critical role of integrin alpha 5 beta 1 in urokinase (uPA)/urokinase receptor (uPAR, CD87) signaling. J Biol Chem 2003; 278 (32) 29863-29872
  • 76 Huai Q, Zhou A, Lin L , et al. Crystal structures of two human vitronectin, urokinase and urokinase receptor complexes. Nat Struct Mol Biol 2008; 15 (4) 422-423
  • 77 Høyer-Hansen G, Behrendt N, Ploug M, Danø K, Preissner KT. The intact urokinase receptor is required for efficient vitronectin binding: receptor cleavage prevents ligand interaction. FEBS Lett 1997; 420 (1) 79-85
  • 78 Sidenius N, Blasi F. Domain 1 of the urokinase receptor (uPAR) is required for uPAR-mediated cell binding to vitronectin. FEBS Lett 2000; 470 (1) 40-46
  • 79 Chain D, Kreizman T, Shapira H, Shaltiel S. Plasmin cleavage of vitronectin. Identification of the site and consequent attenuation in binding plasminogen activator inhibitor-1. FEBS Lett 1991; 285 (2) 251-256