RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2013; 24(10): 1298-1302
DOI: 10.1055/s-0033-1338455
DOI: 10.1055/s-0033-1338455
letter
Studies of a Diastereoselective Electrophilic Fluorination Reaction Employing a Cryo-Flow Reactor
Weitere Informationen
Publikationsverlauf
Received: 26. März 2013
Accepted after revision: 08. April 2013
Publikationsdatum:
23. April 2013 (online)

Abstract
The application of meso-scale flow chemistry in research laboratories continues to increase. Here, we report on the use of a modular cryo-flow device as applied to a diastereoselective fluorination process. The reactor can be incorporated into existing flow chemistry setups to permit continuous processing at low temperatures without recourse to cryogenic consumables.
-
References and Notes
- 1 Now at Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
- 2a Ma J.-A, Cahard D. Chem. Rev. 2004; 104: 6119
- 2b Hamashima Y, Sodeoka M. Synlett 2006; 1467
- 2c Pihko PM. Angew. Chem. Int. Ed. 2006; 45: 544
- 2d Shibata N, Ishimaru T, Nakamura S, Toru T. J. Fluorine Chem. 2007; 128: 469
- 2e Brunet VA, O’Hagan D. Angew. Chem. Int. Ed. 2008; 47: 1179
- 2f Lectard S, Hamashima Y, Sodeoka M. Adv. Synth. Catal. 2010; 352: 2708
- 2g Nie J, Guo H.-C, Cahard D, Ma J.-A. Chem. Rev. 2011; 111: 455
- 2h Hennecke U. Angew. Chem. Int. Ed. 2012; 51: 4532
- 3a Brunet VA, O’Hagan D, Slawin AM. Z. J. Fluorine Chem. 2007; 128: 1271
- 3b Suzuki T, Hamashima Y, Sodeoka M. Angew. Chem. Int. Ed. 2007; 5435
- 3c Peddie V, Butcher RJ, Robinson WT, Wilce MC. J, Traore DA. K, Abell AD. Chem. Eur. J. 2012; 6655
- 3d Less SL, Handa S, Millburn K, Leadlay PF, Dutton CJ, Staunton J. Tetrahedron Lett. 1996; 37: 3515
- 3e Chen S.-H, Lamar J, Guo D, Kohn T, Yang H.-C, McGee J, Timm D, Erickson J, Yip Y, May P, McCarthy J. Bioorg. Med. Chem. Lett. 2004; 14: 245
- 3f Davis FA, Han W. Tetrahedron Lett. 1992; 33: 1153
- 3g Edmonds MK, Graichen FH. M, Gardiner J, Abell AD. Org. Lett. 2008; 10: 885
- 3h Peddie V, Pietsch M, Bromfield KM, Pike RN, Duggan PJ, Abell AD. Synthesis 2010; 1845
- 3i For a recent example with Fox auxiliary, see: Lubin H, Dupuis C, Pytkowicz J, Brigaud T. J. Org. Chem. 2013; 78: 3487
- 4 Davis FA, Kasu PV. N. Tetrahedron Lett. 1998; 39: 6135
- 5a Polar Bear and Polar Bear Plus were purchased from Cambridge Reactor Design, CRD. http://www.cambridgereactordesign.com/index.html.
- 5b Browne DL, Harji BH, Ley SV. Chem. Eng. Technol. 2013; DOI: 10.1002/ceat.201200581
- 6 R-Series purchased from Vapourtec, http://www.vapourtec.co.uk.
- 7a Browne DL, Baumann M, Harji BH, Baxendale IR, Ley SV. Org. Lett. 2011; 13: 3312
- 7b Shu W, Pellegatti L, Oberli MA, Buchwald SL. Angew. Chem. Int. Ed. 2011; 50: 10665
- 7c Sleveland D, Bjørsvik H.-R. Org. Process Res. Dev. 2012; 16: 1121
- 7d For a highlight of this topic, see: Desai AA. Angew. Chem. Int. Ed. 2012; 51: 9223
- 8 Typical procedure for the flow synthesis of α-fluoroamides [collection inclusive of slug diffusion (Table 1 and Figure 1)]: The cryo-flow reactor was set at –60 °C, which took approximately 45 minutes to reach this target from ambient temperature (ca. 22 °C). This process was only required for the first use, the reactor could then be left at the desired temperature for subsequent processes. The loops were loaded with the corresponding starting materials, at the depicted concentrations, and pumping was initiated at 0.5 mL/min for channels A and B before switching the loaded loops in-line. After 10.5 min, the pump for channel C was turned on and the loaded loop was switched in line. The collected material was quenched directly into a saturated aqueous solution of NH4Cl, following the end of the run (typically around 45 min) and extracted with EtOAc (3 × 50 mL). The combined organics were dried (MgSO4) and concentrated in vacuo. The residue was purified by column chromatography on silica gel (gradient mixture of hexane–EtOAc) to provide the desired products. Complete hydrolysis of these amides can be achieved by using LiOH.
- 9 The enantiomeric excess was determined by a HPLC assay, see the Supporting Information in: Yang X, Birman BV. Chem. Eur. J. 2011; 17: 11296
- 10a Kralj JG, Sahoo HR, Jensen KF. Lab Chip 2007; 7: 256
- 10b Atallah RH, Ruzicka J, Christian GD. Anal. Chem. 1987; 59: 2909
- 10c Castell OK, Allender CJ, Barrow DA. Lab Chip 2009; 9: 388
- 10d Kolehmainen E, Turunen I. Chem. Eng. Process. 2007; 46: 834
- 10e Hornung CH, Mackley MR, Baxendale IR, Ley SV. Org. Process Res. Dev. 2007; 11: 399
- 10f Sahoo HR, Kralj JG, Jensen KF. Angew. Chem. Int. Ed. 2007; 46: 5704
- 10g O’Brien M, Koos P, Browne DL, Ley SV. Org. Biomol. Chem. 2012; 10: 7031
- 10h Hu DX, O’Brien M, Ley SV. Org. Lett. 2012; 14: 4246
- 10i Bourne SL, O’Brien M, Kasinathan S, Koos P, Tolstoy P, Hu DX, Bates RW, Martin B, Schenkel B, Ley SV. ChemCatChem 2013; 5: 159
- 10j Zhang Y, Kato S, Anazawa T. Lab Chip 2010; 10: 899
- 10k Hartman RL, Sahoo HR, Yen BC, Jensen KF. Lab Chip 2009; 9: 1843
- 10l Lam KF, Cao E, Sorensen E, Gavriilidis A. Lab Chip 2011; 11: 1311
- 10m Browne DL, Deadman BJ, Ashe R, Baxendale IR, Ley SV. Org. Process Res. Dev. 2011; 15: 693
For some reviews on the topic of asymmetric fluorination, see:
For examples of the electrophilic fluorination of N-acyl-oxazolidinones, see:
For electrophilic borylations in flow, see:
For examples of continuous liquid–liquid extraction, separation and/or washing processes, see:
For examples of continuous distillation, see:
For an example of continuous generation of a precipitate and filtration, see: