RSS-Feed abonnieren
DOI: 10.1055/s-0033-1338839
Asymmetric Domino Double Michael Addition of Nitroolefins and Aldehyde Esters with trans-Perhydroindolic Acid as an Organocatalyst
Publikationsverlauf
Received: 07. März 2013
Accepted after revision: 30. April 2013
Publikationsdatum:
29. Mai 2013 (online)
Abstract
An asymmetric domino double Michael addition reaction was developed using accessible substrates to construct biologically important and synthetically challenging cyclopentanes with four contiguous stereocenters. The proline-like molecules, trans-perhydroindolic acids, proved to be efficient organocatalysts in this reaction. Under the optimal reaction conditions, the asymmetric domino double Michael addition provided good yields (up to 98%), and excellent diastereoselectivities (up to 100% dr) and enantioselectivities (up to 99% ee). The obtained polysubstituted aliphatic cyclopentanes not only exist in biologically active natural products and medicines, but can also be converted into many other useful scaffolds via a simple transformation, such as cis-fused bicyclic lactams. Our current methodology is suitable for the synthesis of polysubstituted aliphatic cyclopentanes with contiguous multiple stereocenters.
Key words
polysubstituted aliphatic cycloalkanes - trans-perhydroindolic acids - organocatalyst - domino double Michael addition - bicyclic lactamSupporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synthesis.
- Supporting Information
-
References
- 1a Trost BM. Angew. Chem. Int. Ed. 1986; 25: 1
- 1b Hudlicky T, Price JD. Chem. Rev. 1989; 89: 1467
- 1c Schultz AG. Acc. Chem. Res. 1990; 23: 207
- 1d Masse CE, Panek JS. Chem. Rev. 1995; 95: 1293
-
1e Lautens M, Klute W, Tam W. Chem. Rev. 1996; 96: 49
- 1f Silva LF. Tetrahedron 2002; 58: 9137
- 1g Helmchen G, Ernst M, Paradies G. Pure Appl. Chem. 2004; 76: 495
- 1h Biaggio FC, Rufino AR, Zaim MH, Zaim CY. H, Bueno MA, Rodrigues A. Curr. Org. Chem. 2005; 9: 419
- 1i Heasley B. Eur. J. Org. Chem. 2009; 1477
- 2a Nicolaou KC, Baran PS, Zhong Y.-L. J. Am. Chem. Soc. 2001; 123: 3183
- 2b Nicolaou KC, Montagnon T, Baran PS, Zhong Y.-L. J. Am. Chem. Soc. 2002; 124: 2245
- 2c Edlin CD, Faulkner J, Quayle P. Tetrahedron Lett. 2006; 47: 1145
- 2d Lai KW, Paquette LA. Org. Lett. 2008; 10: 2115
- 2e O’Malley DP, Yamaguchi J, Young IS, Seiple IB, Baran PS. Angew. Chem. Int. Ed. 2008; 47: 3581
- 2f Yamaguchi J, Seiple IB, Young IS, O’Malley DP, Maue M, Baran PS. Angew. Chem. Int. Ed. 2008; 47: 3578
- 2g Arndt HD, Riedrich M. Angew. Chem. Int. Ed. 2008; 47: 4785
- 2h Namba K, Kaihara Y, Yamamoto H, Imagawa H, Tanino K, Williams RM, Nishizawa M. Chem. Eur. J. 2009; 15: 6560
- 2i Jessen HJ, Gademann K. Angew. Chem. Int. Ed. 2010; 49: 2972
- 2j Chinigo GM, Breder A, Carreira EM. Org. Lett. 2011; 13: 78
- 3a Bui T, Barbas III CF. Tetrahedron Lett. 2000; 41: 6951
- 3b Halland N, Aburel PS, Jørgensen KA. Angew. Chem. Int. Ed. 2004; 43: 1272
- 3c Marigo M, Bertelsen S, Landa A, Jørgensen KA. J. Am. Chem. Soc. 2006; 128: 5475
- 3d Enders D, Hüttl MR. M, Grondal C, Raabe G. Nature (London) 2006; 441: 861
- 3e Enders D, Hüttl MR. M, Runsink J, Raabe G, Wendt B. Angew. Chem. Int. Ed. 2007; 46: 467
- 3f Carlone A, Cabrera S, Marigo M, Jørgensen KA. Angew. Chem. Int. Ed. 2007; 46: 1101
- 3g Reyes E, Jiang H, Milelli A, Elsner P, Hazell RG, Jørgensen KA. Angew. Chem. Int. Ed. 2007; 46: 9202
- 3h Han B, Li J.-L, Ma C, Zhang S.-J, Chen Y.-C. Angew. Chem. Int. Ed. 2008; 47: 9971
- 3i Wang J, Xie H, Zu L, Wang W. Angew. Chem. Int. Ed. 2008; 47: 4177
- 3j Lu M, Zhu D, Lu Y, Hou Y, Tan B, Zhong G. Angew. Chem. Int. Ed. 2008; 47: 10187
- 3k Zhu D, Lu M, Dai L, Zhong G. Angew. Chem. Int. Ed. 2009; 48: 6089
- 3l Zhang X, Zhang S, Wang W. Angew. Chem. Int. Ed. 2010; 49: 1481
- 3m Pellissier H. Chem. Rev. 2013; 113: 442
- 4a Comprehensive Asymmetric Catalysis . Vols. I–III. Jacobsen EN, Pfaltz A, Yamamoto H. Springer; Berlin: 1999
- 4b Hayashi Y In Cycloaddition Reactions in Organic Synthesis . Kobayashi S, Jørgensen KA. Wiley-VCH; Weinheim: 2002. Chap. 1
- 4c Ahrendt KA, Borths CJ, MacMillan DW. C. J. Am. Chem. Soc. 2000; 122: 4243
- 4d Northrup AB, MacMillan DW. C. J. Am. Chem. Soc. 2002; 124: 2458
- 4e Ishihara K, Nakano K. J. Am. Chem. Soc. 2005; 127: 10504
- 4f Kano T, Tanaka Y, Maruoka K. Org. Lett. 2006; 8: 2687
- 4g Hayashi Y, Okano T, Aratake S, Hazelard D. Angew. Chem. Int. Ed. 2007; 46: 4922
- 4h Hong B.-C, Nimje RY, Wu M.-F, Sadani AA. Eur. J. Org. Chem. 2008; 1449
- 4i Baslé O, Raimondi W, Sanchez Duque MM, Bonne D, Constantieux T, Rodriguez J. Org. Lett. 2010; 12: 5246
- 4j Imashiro R, Uehara H, Barbas III CF. Org. Lett. 2010; 12: 5250
- 4k Uehara H, Imashiro R, Hernández-Torres G, Barbas III CF. Proc. Natl. Acad. Sci. U.S.A. 2010; 107: 20672
- 4l Tan B, Hernandez-Torre G, Barbas III CF. J. Am. Chem. Soc. 2011; 133: 12354
- 4m Chintala P, Ghosh SK, Long E, Headley AD, Ni B. Adv. Synth. Catal. 2011; 353: 2905
- 4n Varga S, Jakab G, Drahos L, Holczbauer T, Czugler M, Soós T. Org. Lett. 2011; 13: 5416
- 4o Jia Z.-J, Zhou Q, Zhou Q.-Q, Chen P.-Q, Chen Y.-C. Angew. Chem. Int. Ed. 2011; 50: 8638
- 4p Shi D, Xie Y, Zhou H, Xia C, Huang H. Angew. Chem. Int. Ed. 2012; 51: 1248
- 5a Bonne D, Salat L, Dulcère J.-P, Rodriguez J. Org. Lett. 2008; 10: 5409
- 5b Raimondi W, Lettieri G, Dulcère J.-P, Bonne D, Rodriguez J. Chem. Commun. 2010; 46: 7247
- 5c Li Y.-M, Li X, Peng F.-Z, Li Z.-Q, Wu S.-T, Sun Z.-W, Zhang H.-B, Shao Z.-H. Org. Lett. 2011; 13: 6200
- 5d Li X, Li Y.-M, Peng F.-Z, Wu S.-T, Li Z.-Q, Sun Z.-W, Zhang H.-B, Shao Z.-H. Org. Lett. 2011; 13: 6160
- 5e Hong BC, Nimje RY, Lin CW, Liao JH. Org. Lett. 2011; 13: 1278
- 5f Tan B, Candeias NR, Barbas III CF. Nat. Chem. 2011; 3: 473
- 5g Tan B, Candeias NR, Barbas III CF. J. Am. Chem. Soc. 2011; 133: 4672
- 5h Albertshofer K, Anderson KE, Barbas III CF. Org. Lett. 2012; 14: 5968
- 6 Zu L, Li H, Xie H, Wang J, Jiang W, Tang Y, Wang W. Angew. Chem. Int. Ed. 2007; 46: 3732
- 7 Zhao G.-L, Ibrahem I, Dziedzic P, Sun J, Bonneau C, Córdova A. Chem. Eur. J. 2008; 14: 10007
- 8a Tan B, Shi Z, Chua PJ, Zhong G. Org. Lett. 2008; 10: 3425
- 8b Tan B, Chua PJ, Zeng X, Lu M, Zhong G. Org. Lett. 2008; 10: 3489
- 9 Albertshofer K, Tan B, Barbas III CF. Org. Lett. 2012; 14: 1834
- 10a Zhao L, Shen J, Liu D, Liu Y, Zhang W. Org. Biomol. Chem. 2012; 10: 2840
- 10b Shen J, An Q, Liu D, Liu Y, Zhang W. Chin. J. Chem. 2012; 30: 2681
- 10c Shen J, Liu D, An Q, Liu Y, Zhang W. Adv. Synth. Catal. 2012; 354: 3311
- 11 CCDC 907257 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- 12a Wang W, Wang J, Li H. Angew. Chem. Int. Ed. 2005; 44: 1369
- 12b Wang J, Li H, Lou B, Zu L.-S, Guo H, Wang W. Chem. Eur. J. 2006; 12: 4321
- 12c Xia X.-F, Shu X.-Z, Ji K.-G, Yang Y.-F, Shaukat A, Liu X.-Y, Liang Y.-M. J. Org. Chem. 2010; 75: 2893
- 12d Wang BG, Ma BC, Wang Q, Wang W. Adv. Synth. Catal. 2010; 352: 2923
For selected reviews, see:
For selected papers, see:
For selected papers, see:
For selected reviews, see:
For selected examples:
For selected papers, see: