Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2013; 24(12): 1505-1508
DOI: 10.1055/s-0033-1339177
DOI: 10.1055/s-0033-1339177
letter
Synthesis and Characterization of 2-Alkylbenzotriazole-Based Donor-π-Acceptor-Type Copolymers
Further Information
Publication History
Received: 03 April 2013
Accepted after revision: 08 May 2013
Publication Date:
14 June 2013 (online)
Abstract
Four donor-π-acceptor-type copolymers were synthesized via palladium-catalyzed Sonogashira coupling reaction. The resulting donor-π-acceptor-conjugated copolymers can show fluorescence emission in the range of λ = 473–568 nm, and the band gaps of the alternating polymers can be tuned in the range 3.09–3.74 eV by using four different donors.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References and Notes
- 1a Ozdemir S, Sendur M, Oktem G, Toppare L. J. Mater. Chem. 2012; 22: 4687
- 1b Oh HS, Kim TD, Koh YH, Lee KS, Cho S, Cartwright A, Prasad PN. Chem. Commun. 2011; 47: 8931
- 1c Günes S, Neugebauer H, Sariciftci NS. Chem. Rev. 2007; 107: 1324
- 1d Sirringhaus H. Adv. Mater. 2005; 17: 2411
- 1e Coakley KM, McGehee MD. Chem. Mater. 2004; 16: 4533
- 1f Zuniga CA, Barlow S, Marder SR. Chem. Mater. 2011; 23: 658
- 1g Sonar P, Williams EL, Singh SP, Dodabalapur A. J. Mater. Chem. 2011; 21: 10532
- 1h Allard S, Forster M, Souharce B, Thiem H, Scherf U. Angew. Chem. Int. Ed. 2008; 47: 4070
- 2a Tanimoto A, Yamamoto T. Macromolecules 2006; 39: 3546
- 2b Brabec CJ, Dyakonov V, Scherf U In Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technologies . John Wiley and Sons; New York: 2008
- 2c Forrest SR. Nature 2004; 428: 911
- 2d Yan H, Chen Z, Zheng Y, Newman C, Quinn JR, Dötz F, Kastler M, Facchetti A. Nature 2009; 457: 679
- 2e Kang I, An TK, Hong JA, Yun HJ, Kim R, Chung DS, Park CE, Kim YH, Kwon SK. Adv. Mater. 2013; 25: 524
- 3a Kim J, Yun MH, Anant P, Cho S, Jacob J, Kim JY, Yang C. Chem. Eur. J. 2011; 17: 14681
- 3b Taso HN, Cho DM, Park I, Hansen MR, Mavrinskiy A, Yoon DY, Graf R, Pisula W, Spiess HW, Mullen K. J. Am. Chem. Soc. 2011; 133: 2605
- 4a Wang M, Hu XW, Liu P, Li W, Gong X, Huang F, Cao Y. J. Am. Chem. Soc. 2011; 13: 9638
- 4b Zhou EJ, Cong JZ, Tajima K, Hashimoto K. Chem. Mater. 2010; 22: 4890
- 4c Cui CH, Fan X, Zhang MJ, Zhang J, Min J, Li YF. Chem. Commun. 2011; 47: 11345
- 4d Huo LJ, Hou JH, Zhang SQ, Chen HY, Yang Y. Angew. Chem. Int. Ed. 2010; 122: 1542
- 4e Bronstein H, Chen ZY, Ashraf RS, Zhang WM, Du JP, Durrant JR, Tuladhar PS, Song K, Watkins SE, Geerts Y, Wienk MM, Janssen RA. J, Anthopoulos T, Sirringhaus H, Heeney M, McCulloch I. J. Am. Chem. Soc. 2011; 133: 3272
- 5a Ma X, Mao XR, Zhang SW, Huang XB, Cheng YX, Zhu CJ. Polym. Chem. 2013; 4: 520
- 5b Wu YZ, Ma X, Jiao JM, Cheng YX, Zhu CJ. Synlett 2012; 23: 778
- 5c Wang XC, Chen S, Sun YP, Zhang MJ, Li YF, Li XY, Wang HQ. Polym. Chem. 2011; 2: 2872
- 5d Baek NS, Hau SK, Yip HL, Acton O, Chen KS, Jen AK. Y. Chem. Mater. 2008; 20: 5734
- 5e Wang XC, Sun YP, Chen S, Guo X, Zhang MJ, Li XY, Li YF, Wang HQ. Macromolecules 2012; 45: 1208
- 5f Woo CH, Beaujuge PM, Holcombe TW, Lee OP, Fréchet JM. J. J. Am. Chem. Soc. 2010; 132: 15547
- 5g Zhang MJ, Guo X, Li YF. Macromolecules 2011; 44: 8798
- 5h Bundgaard E, Krebs FC. Sol. Energy Mater. Sol. Cells 2007; 91: 954
- 5i Cheng YJ, Yang SH, Hsu CS. Chem. Rev. 2009; 109: 5868
- 5j Chen J, Cao Y. Acc. Chem. Res. 2009; 42: 1709
- 5k Popere BC, Pelle AM. D, Thayumanavan S. Macromolecules 2011; 44: 4767
- 5l Duan CH, Huang F, Cao Y. J. Mater. Chem. 2012; 22: 10416
- 6a Patel DG, Feng F, Ohnishi YY, Abboud KA, Hirata S, Schanze KS, Reynolds JR. J. Am. Chem. Soc. 2012; 134: 2599
- 6b Baran D, Balan A, Celebi S, Esteban BM, Neugebauer H, Sariciftci NS, Toppare L. Chem. Mater. 2010; 22: 2978
- 6c Hızalan G, Balan A, Baran D, Toppare L. J. Mater. Chem. 2011; 21: 1804
- 7 Zhang ZH, Peng B, Liu B, Pan CY, Li YF, He YH, Zhou KC, Zou YP. Polym. Chem. 2010; 1: 1441
- 8 Zhang LJ, He C, Chen JW, Yuan P, Huang L, Zhang C, Cai WZ, Liu ZT, Cao Y. Macromolecules 2010; 43: 9771
- 9 Price SC, Stuart AC, Yang LQ, Zhou HX, You W. J. Am. Chem. Soc. 2011; 133: 4625
- 10 Peng B, Najari A, Liu B, Berrouard P, Gendron D, He Y, Zhou K, Zou Y, Leclerc M. Macromol. Chem. Phys. 2010; 211: 2026
- 11 Sang G, Zou Y, Li Y. J. Phys. Chem. C 2008; 112: 12058
- 12 Lee J, Lee JI, Park MJ, Jung YK, Cho NS, Cho HJ. Hwang D. H, Lee SK, Park JH, Hong J, Chu HY, Shim HK. Polym. Chem. 2007; 45: 1236
- 13 Guerrero M, Urbano M, Velaparthi S, Zhao J, Schaeffer MT, Brown S, Rosen H, Roberts E. Bioorg. Med. Chem. Lett. 2011; 21: 3632
-
14
Synthesis Procedures for the BTA-Based Conjugated Polymers
Synthesis of P1 To a 100 mL Schlenk flask, M-1 (0.14 g, 0.05 mmol), M2 (0.31 g, 0.05 mmol), Pd(PPh3)4 (2.9 mg, 0.03 mmol), and CuI (0. 5 mg, 0.003 mmol) were added in 10 mL THF and Et3N (6 mL) under N2 atmosphere. The mixture was stirred at 90 °C for 2 d. The solvent was evaporated under vacuum after the mixture was cooled to r.t. The residue was dissolved and in CH2Cl2 (100 mL) and filtered; the filtrate was then concentrated and added to MeOH to precipitate the polymer. The polymer was dried in vacuum to give 210 mg of product in 58% yield. GPC results: M w = 17240, M n = 10740, PDI = 1.54. 1H NMR (300 MHz, CDCl3): δ = 7.24–7.21 (m, 6 H), 6.69–6.66 (m, 2 H), 3.77–3.76 (m, 4 H), 1.75–0.85 (m, 50 H). Anal. Calcd for (C48H64N4S)n: C, 78.85; H, 9.10; N, 7.66; S, 4.39. Found: C, 78.23; H, 9.16; N, 7.84; S, 4.27. Synthesis of P2 P2 was synthesized from monomers M-1 and M-3 in 70% yield by following in the same procedure used for the preparation of P1. GPC results: M w = 17240, M n = 10050, PDI = 1.72. 1H NMR (300 MHz, CDCl3): δ = 8.45–7.23 (m, 1 H), 8.21–8.19 (m, 2 H), 7.78–7.16 (m, 5 H), 4.80–4.76 (m, 2 H), 4.20–4.06 (m, 2 H), 1.21–0.85 (m, 50 H). Anal. Calcd for (C48H62N4O2S)n: C, 75.55; H, 8.72; N, 7.34; S, 4.20. Found: C, 75.64; H, 8.63; N, 7.17; S, 4.28. Synthesis of P3 P3 was synthesized from monomers M1 and M4 in 73%yield by following the same procedure used for the preparation of P1. GPC results: M w = 15780, M n = 12850, PDI = 1.23. 1H NMR (300 MHz, CDCl3): δ = 7.80–8.53 (m, 2 H), 7.40–7.28 (m, 2 H), 7.12–6.81 (m, 6 H), 5.21–4.79 (br, 2 H), 3.83–3.81 (br, 2 H), 2.16–0.84 (m, 50 H). Anal. Calcd for: (C56H68N4S3)n: C, 75.29; H, 7.67; N, 6.27; S, 10.77. Found: C, 75.18; H, 7.76; N, 6.12; S, 10.95. Synthesis of P4 P4 was synthesized from monomers M1 and M5 in 73% yield by following the same procedure used for the preparation of P1. GPC results: M w = 17910, M n = 10080, PDI = 1.78. 1H NMR (300 MHz, CDCl3): δ = 8.34–8.32 (m, 2 H), 7.84–7.83 (m, 2 H), 7.60–6.31 (m, 8 H), 4.80–4.82 (br, 2 H), 4.18–4.17 (br, 2 H), 2.26–0.59 (m, 50 H). Anal. Calcd for (C56H66N4O2S3)n: C, 72.69; H, 7.41; N, 6.05; O, 3.46; S, 10.40. Found: C, 72.76; H, 7.36; N, 6.01; O, 3.49; S, 10.37.