Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2013; 24(12): 1533-1540
DOI: 10.1055/s-0033-1339181
DOI: 10.1055/s-0033-1339181
letter
A One-Pot Stereoselective Synthesis of Electron-Deficient 4-Substituted (E,E)-1-Arylsulfonylbuta-1,3-dienes and Their Chemoselective [3+2] Cycloaddition with Azomethine Ylides – A Simple Synthesis of 1,3,4-Trisubstituted Pyrrolidines and Pyrroles
Further Information
Publication History
Received: 17 April 2013
Accepted after revision: 13 May 2013
Publication Date:
11 June 2013 (online)
Abstract
A simple and efficient method for the synthesis of (E,E)-1-(arylsulfonyl)buta-1,3-dienes bearing electron-withdrawing substituents like cyano and ethoxycarbonyl at position 4, involving a one-pot alkylation of bis(phenylsulfonyl)methane with trans-ethyl 4-bromocrotonate/trans-4-bromocrotononitrile, and elimination of arylsulfinic acid, is described. These dienes undergo facile mono [3+2] cycloaddition with azomethine ylides chemoselectivity to furnish functionalized 1,3,4-trisubstituted pyrrolidines. Oxidation of these cycloadduct with MnO2·SiO2 under mild conditions provides 1,3,4-trisubstituted pyrroles.
Key words
(E,E)-1-arylsulfonylbuta-1,3-diene - azomethine ylide - chemoselective cycloaddition - 1,3,4-trisubstituted pyrrolidines - 1,3,4-trisubstituted pyrrolesSupporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References and Notes
- 1a Bäckvall J.-E, Chinchilla R, Nájera C, Yus M. Chem. Rev. 1998; 98: 2291
- 1b Simpkins NS. Tetrahedron 1990; 46: 6984
- 2 Overman LE, Petty CB, Ban T, Huang GT. J. Am. Chem. Soc. 1983; 105: 6335
- 3a Wang X, Ni Z, Lu X, Hollis A, Banks H, Rodriguez A, Padwa A. J. Org. Chem. 1993; 58: 5377
- 3b Xiaojin L, Lantrip D, Fuchs PL. J. Am. Chem. Soc. 2003; 125: 14262
- 4 Bunce RA, Wamsley EJ, Pierce JD, Shellhammer AJ, Drumright RE. J. Org. Chem. 1987; 52: 464
- 5a Alkaloids: Chemical and Biological Perspectives. Monlineux RJ, Pelletier SW. Wiley; New York: 1987. Chap. 1
- 5b Liu J.-H, Chan H.-W, Wong HN. C. J. Org. Chem. 2000; 65: 3274
- 6 Fujimori S. JP 88-2912, 1990 ; Chem. Abstr. 1990, 112, 98409.
- 7a Wagner G. Chem. Eur. J. 2003; 9: 1503
- 7b Sun XM, Wang MH, Liu P, Bian WS, Feng DC, Cai ZT. J. Mol. Struct. (Theochem) 2004; 73: 679
- 7c Domingo LR, Arno M, Merino P, Tejero T. Eur. J. Org. Chem. 2006; 3464
- 7d Merino P, Tejero T, Chiacchio U, Romeo G, Rescifina A. Tetrahedron 2007; 63: 1448
- 8a Harwood LM, Vickers RJ. Synthetic Application of 1,3-Dipolar Cycloaddition Chemistry toward Heterocycles and Naturals Products. Vol. 59. Padwa A, Pearson WH. Wiley; New York: 2002: 169-252
- 8b Padwa A. 1,3-Dipolar Cycloaddition Chemistry. Vol. 1 and 2. Wiley; New York: 1984
- 9 Grigg R, Sridharan V In Advances in Cycloaddition. Vol. 3. Curran DP. JAI Press; London: 1993: 161
- 10a Nájera C, Sansano JM. Angew. Chem. Int. Ed. 2005; 44: 6272 ; Angew. Chem. Int. Ed. 2005, 117, 6428
- 10b Gothelf KV In Cycloaddition Reactions in Organic Synthesis. Kobayashi S, Jorgensen KA. Wiley-VCH; Weinheim: 2002: 211
- 10c Gothelf KV, Jorgensen KA. Chem. Rev. 1998; 98: 863
- 10d Gothelf KV, Jørgensen KA. Chem.Commun. 2000; 1449
- 10e Pandey G, Banerjee P, Gadre SR. Chem. Rev. 2006; 106: 4484
- 11a Lynch CL, Hale JJ, Budhu RJ, Gentry AL, Chapman KT, Mills SG, MacCoss M, Malkowitz L, Springer MS, Gould SL, DeMartino JA, Siciliano SJ, Cascieri MA, Carella A, Carver G, Holmes K, Schleif WA, Danzeisen R, Hazuda D, Kessler J, Lineberger J, Miller M, Emini EA. Bioorg. Med. Chem. Lett. 2002; 12: 3001
- 11b Hale JJ, Budhu RJ, Mills SG, MacCoss M, Malkowitz L, Siciliano S, Gould SL, DeMartino JL, Springer MS. Bioorg. Med. Chem. Lett. 2001; 11: 1437
- 12 Blumberg LC, Costa B, Goldstein R. Tetrahedron Lett. 2011; 52: 872 ; and references cited therein for cycloaddition chemistry
- 13 Beugelmans R, Benadjila IL, Chastanet J, Negron G, Roussi G. Can. J. Chem. 1958; 63: 725
- 14a Baker-Glenn CA. G, Anthony GM, Barrett AG. M, Gray AA, Procopiou PA, Ruston M. Tetrahedron Lett. 2005; 46: 7427
- 14b Plobeck NA, Backvall JE. J. Org. Chem. 1991; 56: 4508
- 14c Backvall JE, Ericsson AM, Plobeck NA, Juntunen SK. Tetrahedron Lett. 1992; 33: 131
- 15 Vedejs E, Little JD. J. Org. Chem. 2004; 69: 1794
- 16 Cao Y.-J, Lai Y.-Y, Cao H, Xing X.-N, Wang X, Xiao W.-J. Can. J. Chem. 2006; 84: 1529
- 17 General Procedure for the Synthesis of (2E,4E)-Ethyl 5-(Phenylsulfonyl)penta-2,4-dienoate (4a) LHMDS (8.4 mmol, 1.06 M solution in THF) was added dropwise to a –15 °C cooled solution of bis(phenylsulfonyl)-methane (3a, 3.4 mmol) in distilled THF (15 mL) under argon. After being stirred at –15 °C for 1 h, trans-ethyl 4-bromocrotonate (3.7 mmol) in distilled THF (5 mL) was added dropwise over the period of 10 min and the reaction mixture was cooled to r.t. over a period of 1–2 h and stirred at r.t. for 24 h. The reaction mixture was quenched with sat. NH4Cl (20 mL) and extracted with EtOAc (2 × 20 mL), washed with H2O (2 × 20 mL) and brine (20 mL), and the organic layer was dried over MgSO4. Evaporation of the solvent under vacuum furnished the desired crude product. The crude product was purified by column chromatography on silica gel (230–400 mesh) with 17–20% of EtOAc in hexane afforded the corresponding product (2E,4E)-ethyl 5-(phenylsulfonyl)penta-2,4-dienoate (4a) as a colourless solid with 75% yield; mp 71.5–72.5 °C. 1H NMR (300 MHz, CDCl3): δ = 7.54–7.92 (m, 5 H), 7.18 (m, 2 H), 6.66 (d, 1 H, J = 14.43 Hz,), 6.25 (d, 1 H, J = 14.94 Hz), 4.19 (q, 2 H, J = 7.14 Hz, CH 2CH3), 1.25 (t, 3 H, J = 7.11 Hz, CH2CH 3) ppm. 13C NMR (75 MHz, DMSO-d 6): δ = 165.51, 140.23, 139.22, 138.54, 134.47, 130.24, 127.77, 126.95, 119.40, 60.96, 14.48 ppm. DEPT-NMR (75 MHz, CDCl3): δ = 139.23, 137.70, 134.49, 130.90, 130.25, 127.78. 60.97, 14.48 ppm. LC–MS: m/z = 267.1 [M+ + 1]. Anal. Calcd for C13H14O4S: C, 58.63; H, 5.30; S, 12.04. Found: C, 58.52; H, 5.36; S, 11.98.
- 18 Prempree P, Radviroongit S, Thebtaranonth Y. J. Org. Chem. 1983; 48: 3553
- 19 Sankar U, Sabari V, Suresh G, Uma R, Aravindhan S. Acta Crystallogr., Sect. E.: Struct. Rep. Online 2012; 68: o1093
- 20a Merino P, Tejero T, Diez-Martinez A, Gultekin Z. Eur. J. Org. Chem. 2011; 6567
- 20b Gonzalez-Esguevillas M, Adrio J, Carretero CJ. Chem. Commun. 2012; 48: 2149
- 20c Adrio J, Carretero CJ. Chem. Commun. 2011; 47: 6784
- 20d Tsuge O, Kanemasa S, Ohe M, Takenaka S. Chemistry Lett. 1986; 973
- 21a Houk KN In Pericyclic Reactions . Vol. 2. Marchand AP, Lehr RE. Academic Press; New York: 1977: 203
- 21b Houk KN, Sims J, Watts CR, Luskus LJ. J. Am. Chem. Soc. 1973; 95: 7301
- 22a Fray AH, Meyers AI. J. Org. Chem. 1996; 61: 3362
- 22b Kurkin AV, Sumtsova EA, Yurovskaya MA. Chemistry of Heterocyclic Compounds 2007; 43: 1
- 23 Belyk KM, Beguin CD, Palucki M, Grinberg N, DaSilva J, Askina D, Yasuda N. Tetrahedron Lett. 2004; 45: 3265
- 24a Hosomi A, Sakata Y, Sakurai H. Chem. Lett. 1984; 1117
- 24b Shi J, Stover JS, Whiteby LR, Vogt PK, Boger DL. Bioorg. Med. Chem. Lett. 2009; 19: 6038
- 25 General Procedure for the Synthesis of (3S,4R)-Ethyl 1-tert-Butyl-4-[(E)-2-(phenylsulfonyl)vinyl]pyrrolidine-3-carboxylate (8a) TFA (0.38 mmol) in CH2Cl2 (1 mL) was added to a stirred solution of (E,E)-1-arylsulfonyl-4-ethoxycarbonylbuta-1,3-diene (4a, 3.8 mmol) and N-(methoxymethyl)-N-[(trimethylsilyl)methyl]tert-butylamine (7a, 4.7 mmol) in anhyd CH2Cl2 (15 mL) at 0 °C under N2 atmosphere, the reaction mixture was allowed to warm to r.t. and stirred for 30 min. After completion of reaction (monitored by TLC), the reaction mixture was quenched with a 10% aq solution of NaHCO3 (30 mL) and extracted with CH2Cl2 (2 × 30 mL), washed with H2O (30 mL) and brine (30 mL), and the organic layer was dried over MgSO4. The solvent was evaporated under vacuum, and the crude product was subjected to column chromatography (25% EtOAc in n-hexane) to yield analytically pure (3S,4R)-ethyl 1-tert-butyl-4-[(E)-2-(phenylsulfonyl)vinyl]pyrrolidine-3-carboxylate (8a) as a pale yellow gummy liquid; yield 76%. 1H NMR (400 MHz, CDCl3): δ = 7.79 (m, 2 H), 7.45–7.57 (m, 3 H), 6.89 (dd, 1 H, J = 15.0 Hz), 6.30 (d, 1 H, J = 15.8 Hz), 4.01 (q, 1 H, J = 7.2 Hz), 3.08 (m, 1 H), 2.96 (t, 1 H, J = 8.8 Hz), 2.87 (t, 1 H, J = 8.7 Hz), 2.80 (t, 1 H, J = 7.5 Hz), 2.72 (q, 1 H, J = 7.8 Hz), 2.55 (t, 1 H, J = 7.7 Hz), 1.18 (t, 3 H, J = 7.1 Hz), 1.08 (s, 9 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 172.85, 146.98, 140.37, 133.28, 130.75, 129.19, 127.54, 60.90, 52.37, 51.14, 49.06, 48.15, 43.04, 25.75, 14.02 ppm. DEPT-NMR (100 MHz, CDCl3): δ = 133.80, 133.42, 128.97, 128.80, 125.31, 121.68, 60.23, 30.37, 14.42 ppm. LC–MS (EI): m/z = 366.1 [M + 1]. Anal. Calcd for C19H27NO4S: C, 62.44; H, 7.45; S, 8.77; N, 3.83. Found: C, 62.53; H, 7.37; S, 8.92; N, 3.93
- 26 Padwa A, Dent W. J. Org. Chem. 1987; 52: 235
- 27 Liu JH, Chan HW, Wong HN. C. J. Org. Chem. 2000; 65: 3274
- 28a Fiatiadi AJ. Synthesis 1976; 65: 133
- 28b Beck EM, Grimster NP, Hatley H, Gaunt MJ. J. Am. Chem. Soc. 2006; 128: 2528
- 28c Beck EM, Hatley H, Gaunt MJ. Angew. Chem. Int. Ed. 2008; 47: 3004
- 29 Boualem Q, Bernard G, Mohammed M. Can. J. Chem. 1994; 72: 2483
- 30 General Procedure for the Synthesis of Ethyl 1-tert-Butyl-4-[(E)-2-(phenylsulfonyl)vinyl]-1H-pyrrole-3-carboxylate (10a) Activated MnO2 on silica (13.7 mol, freshly prepared) was added to a stirred solution of ethyl 1-tert-butyl-4-[(E)-2-(phenylsulfonyl)vinyl]pyrrolidine-3-carboxylate (8a, 2.74 mol) in anhyd 1,4-dioxane (20 mL) under argon. After being stirred at reflux for 5 h (monitored by TLC), the reaction mixture was filtered through a pad of Celite, and the pad was washed with 1,4-dioxane. Evaporation of the filtrate under vacuum furnished the crude product, which was subjected to column chromatography (25% EtOAc in n-hexane) to yield analytically pure ethyl 1-tert-butyl-4-[(E)-2-(phenylsulfonyl)-vinyl]-1H-pyrrole-3-carboxylate (10a) as a pale yellow gummy liquid in 68% yield. 1H NMR (400 MHz, CDCl3): δ = 8.02 (d, 1 H, J = 15.4 Hz), 7.93 (m, 2 H), 7.51 (m, 4 H), 7.11 (s, 1 H), 6.98 (d, 1 H, J = 15.4 Hz), 4.26 (q, 2 H), 1.38 (s, 9 H), 1.34 (t, 3 H) ppm. 13C NMR (400 MHz, CDCl3): δ = 164.13, 138.47, 133.73, 133.34, 128.89, 128.73, 125.23, 121.60, 116.08, 116.04, 60.15, 56.78, 30.29, 14.36 ppm. LC–MS (EI): m/z = 384.4 [M+ + Na]. Anal. Calcd for C19H23NO4S: C, 63.13; H, 6.41; S, 8.87; N, 3.88. Found: C, 63.47; H, 6.47; S, 8.52; N, 3.68
For reviews of sulfonyl diene in organic synthesis, see:
For reviews on 1,3-dipolar cycloaddition on nonstablized azomethine ylides, see:
Reviews: