Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2013; 24(12): 1523-1528
DOI: 10.1055/s-0033-1339183
DOI: 10.1055/s-0033-1339183
letter
Pd Immobilized in Mesoporous Silica Particles as Recyclable Catalysts for Suzuki–Miyaura Coupling: Cooperative Effects Exerted by Co-Immobilized Amine Functionalities
Further Information
Publication History
Received: 09 April 2013
Accepted after revision: 13 May 2013
Publication Date:
14 June 2013 (online)
Abstract
A bifunctional heterogeneous palladium catalyst bearing additional basic sites was successfully prepared by sequential Cu-catalyzed 1,3-dipolar alkyne–azide cycloaddition and thermal nitroxide-exchange reaction of surface-bound alkoxyamines. This catalyst shows high activity in the Suzuki–Miyaura cross-coupling. The additional basic functionality acts cooperatively since an analogous heterogeneous Pd catalyst lacking the amine functionality is less active. Such catalysts can be recycled up to ten times without loss of activity.
Key words
mesoporous silica nanoparticles - cooperative Pd catalysis - Suzuki coupling - catalyst immobilizationSupporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References and Notes
- 1a Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
- 1b Miyaura N, Yamada K, Suzuki A. Tetrahedron Lett. 1979; 3437
- 1c Suzuki A. J. Organomet. Chem. 1999; 576: 147
- 1d Barder TE, Walker SD, Martinelli JR, Buchwald SL. J. Am. Chem. Soc. 2005; 127: 4685
- 2a Kim JW, Kim JH, Lee DH, Lee YS. Tetrahedron Lett. 2006; 47: 4745
- 2b Alacid E, Nájera C. J. Organomet. Chem. 2009; 694: 1658
- 2c Ogasawara S, Shinji K. J. Am. Chem. Soc. 2010; 132: 4608
- 2d Soomro SS, Röhlich C, Köhler K. Adv. Synth. Catal. 2011; 353: 767
- 2e Kitamura Y, Sakurai A, Udzu T, Maegawa T, Monguchi Y, Sajiki H. Tetrahedron 2007; 63: 10596
- 2f Zhang P.-P, Zhang X.-X, Sun H.-X, Liu R.-H, Wang B, Hui LinY. Tetrahedron Lett. 2009; 50: 4455
- 3a Gürbüz N, Vural S, Yaşar S, Özdemir I, Seşkin T. J. Inorg. Organomet. Polym. 2010; 20: 19
- 3b Zhaoa H, Dingb G, Xua L, Caib M. Appl. Organomet. Chem. 2011; 25: 871
- 3c Zheng G, Wang P, Cai M. Chin. J. Chem. 2009; 27: 1420
- 3d Fan G, Cheng S, Zhu M, Gao X. Appl. Organomet. Chem. 2007; 21: 670
- 3e Deme J, Park S, Čejka J, Štěpnička P. Catal. Today 2008; 132: 63
- 3f Bhunia S, Sen R, Koner S. Inorg. Chim. Acta 2010; 363: 3993
- 3g Glasspoole BW, Webb JD, Crudden CM. J. Mol. Catal. A: Chem. 2011; 337: 56
- 3h Glasspoole BW, Webb JD, Crudden CM. J. Catal. 2009; 265: 148
- 3i Sharma KK, Birandar AV, Das S, Asefa T. Eur. J. Inorg. Chem. 2011; 3174
- 3j Komura K, Nakamura H, Sugi Y. J. Mol. Catal. A: Chem. 2008; 293: 72
- 3k Lv G, Mai W, Jin R, Gao L. Synlett 2008; 1418
- 3l Chen W, Li P, Wang L. Tetrahedron 2011; 67: 318
- 3m Fukaya N, Ueda M, Onozawa S, Bandoa KK, Miyaji T, Takagi Y, Sakakura T, Yasuda H. J. Mol. Catal. A: Chem. 2011; 342–343: 58
- 3n Gruber-Woelfler H, Radaschitz PF, Feenstra PW, Haas W, Khinast JG. J. Catal. 2012; 286: 30
- 3o Dhara K, Sarkar K, Srimani D, Kumar Saha S, Chattopadhyay P, Bhaumik A. Dalton Trans. 2010; 39: 6395
- 3p Modak A, Mondal J, Sasidharan M, Bhaumik A. Green Chem. 2011; 13: 1317
- 4 Dickschat AT, Behrends F, Bühner M, Ren J, Weiß M, Eckert H, Studer A. Chem. Eur. J. 2012; 18: 16689
- 5 Dickschat AT, Behrends F, Surmiak S, Weiß M, Eckert H, Studer A. Chem. Commun. 2013; 49: 2195
- 6a Kolb HC, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
- 6b Kowollik et al. recently redefined the ‘click’-reaction at surface; nonetheless, for the readers convenience we would still like to call it ‘click’ reaction: Barner-Kowollik C, Du Prez FE, Espeel P, Hawker CJ, Junkers T, Schlaad H, Van Camp W. Angew. Chem. Int. Ed. 2011; 50: 60
- 6c For ‘click to chelate’ approach, see: Struthers H, Mindt TL, Schibli R. Dalton. Trans. 2010; 39: 675
- 7a Zhang G, Wang Y, Wen X, Ding C, Li Y. Chem. Commun. 2012; 48: 2979
- 7b Chan TR, Hilgraf R, Sharpless KB, Fokin VV. Org. Lett. 2004; 6: 2853
- 7c Wang D, Denux D, Ruiz J, Astruc D. Adv. Synth. Catal. 2013; 355: 129
- 7d Barz M, Herdtweck E, Thiel WR. Angew. Chem. 1998; 110: 2380
- 8a Wagner H, Brinks MK, Hirtz M, Schäfer A, Chi L, Studer A. Chem. Eur. J. 2011; 17: 9107
- 8b Schulte B, Tsotsalas M, Becker M, Studer A, De Cola L. Angew. Chem. Int. Ed. 2010; 49: 6881
- 8c Becker M, De Cola L, Studer A. Chem. Commun. 2011; 47: 3392
- 9 Pagliaro M, Pandarus V, Ciriminna R, Béland F, Carà PD. ChemCatChem 2012; 4: 432
- 10 General Procedure for Conducting the Suzuki–Miyaura Coupling Reaction: In a heatgun-dried Schlenk tube the corresponding halide (0.75 mmol or 1.50 mmol, 1 equiv), boronic acid (1.50 mmol or 3.00 mmol, 2 equiv), K2CO3 (414 mg, 3.00 mmol or 829 mg, 6.00 mmol, 3 equiv) and functionalized nanoparticles (25 mg or 50 mg) were suspended in EtOH (3 mL or 6 mL). The suspension was then stirred at 90 °C for 4–6 h and success of the reaction was monitored by GC. Purification was conducted via flash chromatography (MTBE–pentane, 1:20).
For the immobilization of Pd catalysts, see:
For recent developments on the immobilization of palladium into MSNs, see:
For the use of the triazole–pyridyl moiety and related structure motives, see: