RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2013; 24(14): 1809-1812
DOI: 10.1055/s-0033-1339337
DOI: 10.1055/s-0033-1339337
letter
Gold-Catalyzed Intermolecular Oxidation of Terminal Alkynes: Simple and Efficient Synthesis of α-Mesyloxy Ketones
Weitere Informationen
Publikationsverlauf
Received: 21. April 2013
Accepted after revision: 10. Juni 2013
Publikationsdatum:
01. August 2013 (online)
Abstract
A variety of terminal alkynes were efficiently converted into the corresponding α-mesyloxy ketones through gold-catalyzed intermolecular oxidation in the presence of 3,5-dichloropyridine N-oxide as the oxidant. The reaction is proposed to proceed via α-oxo gold carbene intermolecular O–H insertion.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References and Notes
- 1a Wegner HA, Auzias M. Angew. Chem. Int. Ed. 2011; 50: 8236
- 1b Hashmi AS. K. Chem. Rev. 2007; 107: 3180
- 1c Shen HC. Tetrahedron 2008; 64: 7847
- 1d Shen HC. Tetrahedron 2008; 64: 3885
- 1e de Haro T, Nevado C. Synthesis 2011; 2530
- 1f Corma A, Leyva-Pérez A, Sabater MJ. Chem. Rev. 2011; 111: 1657
-
2a Rudolph M, Hashmi AS. K. Chem. Soc. Rev. 2012; 41: 2448
- 2b Shen HC, Graham TH. Drug Discovery Today: Technol. 2013; 10: e3
- 3a Yan B, Liu Y. Org. Lett. 2007; 9: 4323
-
3b Marion N, Ramón RS, Nolan SP. J. Am. Chem. Soc. 2009; 131: 448
- 3c López-Carrillo V, Echavarren AM. J. Am. Chem. Soc. 2010; 132: 9292
- 3d Mukherjee A, Dateer RB, Chaudhuri R, Bhunia S, Karad SN, Liu R.-S. J. Am. Chem. Soc. 2011; 133: 15372
- 3e Brenzovich WE. Angew. Chem. Int. Ed. 2012; 51: 8933
- 3f Shi S, Wang T, Yang W, Rudolph M, Hashmi AS. K. Chem. Eur. J. 2013; 19: 6576
- 4 Creary X. Acc. Chem. Res. 1985; 18: 3
- 5 Takechi A, Takikawa H, Miyake H, Sasaki M. Chem. Lett. 2006; 35: 128
- 6a Wessig P, Mühling O. Angew. Chem. Int. Ed. 2001; 40: 1064
- 6b Wessig P, Mühling O. Helv. Chim. Acta 2003; 86: 865
- 6c Wessig P, Glombitza C, Müller G, Teubner J. J. Org. Chem. 2004; 69: 7582
- 6d Muehling O, Wessig P. Photochem. Photobiol. Sci. 2006; 5: 1000
- 7 Barrett DG, Liang G.-B, McQuade DT, Desper JM, Schladetzky KD, Gellman SH. J. Am. Chem. Soc. 1994; 116: 10525
- 8 Wessig P, Teubner J. Synlett 2006; 1543
- 9 Lee JC, Choi Y. Tetrahedron Lett. 1998; 39: 3171
- 10 Khanna MS, Garg CP, Kapoor RP. Synlett 1992; 393
- 11 Lodaya JS, Koser GF. J. Org. Chem. 1988; 53: 210
- 12 Lai C, Xi C, Jiang Y, Hua R. Tetrahedron Lett. 2005; 46: 513
- 13a Ye L, Cui L, Zhang G, Zhang LJ. Am. Chem. Soc. 2010; 132: 3258
- 13b Ye L, He W, Zhang L. J. Am. Chem. Soc. 2010; 132: 8550
- 13c Lu B, Li C, Zhang L. J. Am. Chem. Soc. 2010; 132: 14070
- 13d Ye L, He W, Zhang L. Angew. Chem. Int. Ed. 2011; 50: 3236
- 13e Qian D, Zhang J. Chem. Commun. 2011; 47: 11152
- 13f He W, Li C, Zhang L. J. Am. Chem. Soc. 2011; 133: 8482
- 13g Qian D, Zhang J. Chem. Commun. 2012; 48: 7082
- 13h He W, Xie L, Xu Y, Xiang J, Zhang L. Org. Biomol. Chem. 2012; 10: 3168
- 13i Dateer RB, Pati K, Liu R.-S. Chem. Commun. 2012; 48: 7200
- 13j Luo Y, Ji K, Li Y, Zhang L. J. Am. Chem. Soc. 2012; 134: 17412
- 13k Wang Y, Ji K, Lan S, Zhang L. Angew. Chem. Int. Ed. 2012; 51: 1915
- 13l Xu M, Ren T.-T, Li C.-Y. Org. Lett. 2012; 14: 4902
- 13m Fu J, Shang H, Wang Z, Chang L, Shao W, Yang Z, Tang Y. Angew. Chem. Int. Ed. 2013; 52: 4198
- 14a Cui L, Peng Y, Zhang L. J. Am. Chem. Soc. 2009; 131: 8394
- 14b Cui L, Zhang G, Peng Y, Zhang L. Org. Lett. 2009; 11: 1225
- 14c Cui L, Li C, Zhang L. Angew. Chem. Int. Ed. 2010; 49: 9178
- 15a Yeom H.-S, Lee J.-E, Shin S. Angew. Chem. Int. Ed. 2008; 47: 7040
- 15b Yeom H.-S, Lee Y, Jeong J, So E, Hwang S, Lee J.-E, Lee SS, Shin S. Angew. Chem. Int. Ed. 2010; 49: 1611
- 16a Li G, Zhang L. Angew. Chem. Int. Ed. 2007; 46: 5156
- 16b Shapiro ND, Toste FD. J. Am. Chem. Soc. 2007; 129: 4160
- 16c Davies PW, Albrecht SJ. C. Angew. Chem. Int. Ed. 2009; 48: 8372
- 16d Yeom H.-S, Shin S. Org. Biomol. Chem. 2013; 11: 1089
- 17a Cuenca AB, Montserrat S, Hossain KM, Mancha G, Lledós A, Medio-Simón M, Ujaque G, Asensio G. Org. Lett. 2009; 11: 4906
- 17b Li C.-W, Pati K, Lin G.-Y, Sohel SM. A, Hung H.-H, Liu R.-S. Angew. Chem. Int. Ed. 2010; 49: 9891
- 17c Xu C.-F, Xu M, Jia Y.-X, Li C.-Y. Org. Lett. 2011; 13: 1556
- 17d Noey EL, Luo Y, Zhang L, Houk KN. J. Am. Chem. Soc. 2012; 134: 1078
-
17e Bhunia S, Ghorpade S, Huple DB, Liu R.-S. Angew. Chem. Int. Ed. 2012; 51: 2939
- 17f Wang K.-B, Ran R.-Q, Xiu S.-D, Li C.-Y. Org. Lett. 2013; 15: 2374
- 17g Shi S, Wang T, Yang W, Rudolph M, Hashmi AS. K. Chem. Eur. J. 2013; 19: 6576
- 18 Xiao J, Li X. Angew. Chem. Int. Ed. 2011; 50: 7226
- 19 Use of 1-methyl-2-ethynylbenzene as the substrate gave 2,3-dihydro-1H-inden-1-one, see ref. 17e. Use of 1-methoxy-2-ethynylbenzene as the substrate gave benzofuran-3(2H)-one, see ref. 13m.
- 20 Shinada T, Kawakami T, Sakai H, Takada I, Ohfune Y. Tetrahedron Lett. 1998; 39: 3757
- 21 General Procedure N-Oxide 4f (0.39 mmol, 63.96 mg), MsOH (0.36 mmol, 34.60 mg) and Cy3PAuNTf2 (11.1 mg, 0.015 mmol) were added to a solution of the alkyne 1 (0.30 mmol) in chlorobenzene (6 mL) at r.t. The reaction mixture was stirred at r.t., and the progress of the reaction was monitored by TLC. The reaction typically took 8 h. Upon completion, the mixture was concentrated, and the residue was purified by chromatography on silica gel (eluent: hexanes–EtOAc) to afford the desired product 2. 2-Oxo-2-phenylethyl Methanesulfonate (2a) Compound 2a was prepared in 79% yield according to the general procedure and its spectroscopic data match well with with those reported. 1H NMR (400 MHz, CDCl3): δ = 7.90 (d, J = 8.0 Hz, 2 H), 7.66 (t, J = 8.0 Hz, 1 H), 7.52 (t, J = 8.0 Hz, 2 H), 5.53 (s, 2 H), 3.30 (s, 3 H). 13C NMR (100 Mz, CDCl3): δ = 191.09, 134.41, 133.45, 129.04, 127.76, 70.19, 39.15. IR (neat): 2956, 1702, 1560, 1338, 1156, 801 cm–1. HRMS (EI): m/z calcd for C9H10O4S: 214.0300; found: 214.0297.
For some gold-catalyzed oxidative reactions, the possible alkenyl gold mechanism was also proposed, see: