Synlett 2013; 24(14): 1813-1817
DOI: 10.1055/s-0033-1339374
letter
© Georg Thieme Verlag Stuttgart · New York

New Approach to Sugar Dienes; Useful Building Blocks for the Synthesis of Bicyclic Derivatives

Grzegorz Witkowski
Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland   Fax: +48(22)6326681   Email: slawomir.jarosz@icho.edu.pl
,
Sławomir Jarosz*
Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland   Fax: +48(22)6326681   Email: slawomir.jarosz@icho.edu.pl
› Author Affiliations
Further Information

Publication History

Received: 23 May 2013

Accepted after revision: 13 June 2013

Publication Date:
26 July 2013 (online)


Abstract

A sugar aldehyde with silyl protection at C1, readily prepared from methyl α-d-glucopyranoside, reacted with allylborate or allylchromium reagents to afford the corresponding (anti) adducts, which were selectively converted into either E- or Z-diene. Deprotection of the anomeric position with TBAF proceeded in excellent yield, and further functionalization of the resulting hemiacetal led to the formation of complex bicyclic products such as highly functionalized oxazolidines.

Supporting Information

 
  • References and Notes

  • 6 Jarosz S, Szewczyk K, Zawisza A. Tetrahedron: Asymmetry 2003; 14: 1709
  • 9 Jaramillo C, Chiara J.-L, Martin-Lomas M. J. Org. Chem. 1994; 59: 3135
  • 10 Andringa H, Heus-Kloos YA, Brandsma L. J. Organomet. Chem. 1987; 336: C41
  • 11 Okude Y, Hirano S, Hiyama T, Nozaki H. J. Am. Chem. Soc. 1977; 99: 3179
  • 12 Tsai DJ. T, Matteson DS. Tetrahedron Lett. 1981; 22: 2751
  • 13 Fürstner A, Shi N. J. Am. Chem. Soc. 1996; 118: 2533
    • 14a Dorgeret B, Soulier J.-L, Ongeri S, Khemtemourian L, Correia I, Lequin O. Eur. J. Org. Chem. 2011; 5959
    • 14b Ramirez F, Mandal SB, Marecek JF. J. Org. Chem. 1983; 48: 2008
    • 14c Kumari N, Olesen JK, Pedersen CM, Bols M. Eur. J. Org. Chem. 2011; 1266
  • 17 Synthesis of Dienes 18 and 19 Oxidation: Silyl pyranoside 16 (2.08 g, 3.02 mmol) and TEMPO (4.7 mg, 30.2 μmol) were dissolved in anhydrous CH2Cl2 (30 mL) and placed in a water/ice bath. Trichloroisocyanuric acid (0.77 g, 3.32 mmol) was added in one portion and, after 15 min, TLC (hexanes–EtOAc, 7:1) indicated the disappearance of starting material (Rf = 0.5) and formation of a new product (Rf = 0.4). The mixture was filtered through a Celite pad, diluted with Et2O (30 mL), and washed with 5% Na2S2O3 (10 mL), 1 M NaOH (25 mL), 1 M H2SO4 (25 mL), H2O (25 mL), and brine (25 mL), and concentrated. The residue was dissolved in toluene (50 mL) and evaporated to afford the crude aldehyde. Allylboronation: Crude aldehyde was dissolved in anhydrous toluene (30 mL) to which pinacol (E)-1-(trimethylsilyl)-1-propene-3-boronate (0.75 g, 3.02 mmol) was added. The mixture was stirred for 4 days, after which TLC (hexanes–EtOAc, 7:1) indicated the disappearance of starting material (Rf = 0.4) and formation of a two new products (Rf = 0.5 and 0.6). The solution was passed through a column of silica and concentrated to afford the crude silanol as a mixture of anti diastereomers. Elimination to (E)-diene 18: Crude silanol was dissolved in THF (70 mL), then concentrated sulfuric acid (7.2 mL, 134 mmol) was added within 5 min. After 10 min, TLC (hexanes–EtOAc, 7:1) indicated the disappearance of starting material (Rf = 0.5 and 0.6) and formation of a new product (Rf = 0.7). Et2O (140 mL) and H2O (70 mL) were added and the solution was saturated with NaCl. The phases were separated and the organic layer was dried and concentrated. The residue was purified by flash chromatography (hexanes–Et2O, 11:1→9:1→7:1→5:1) to afford 18 (71% yield from 16) as a colorless oil. Elimination to (Z)-diene 19: Crude silanol was dissolved in THF (70 mL) to which KH (30% in mineral oil, 1.80 g, 13.4 mmol) was added within 5 min. After 5 min, TLC (hexanes–EtOAc, 7:1) indicated the disappearance of starting material (Rf = 0.5 and 0.6) and formation of a new product (Rf = 0.7). Et2O (140 mL) and H2O (70 mL) were added and the solution was saturated with NaCl. The phases were separated and the organic layer was dried, concentrated, and the residue was purified by flash chromatography (hexanes–Et2O, 11:1→9:1→7:1→5:1) to afford 19 (76% yield from 16) as a colorless oil.
  • 18 De Luca L, Giacomelli G, Porcheddu A. Org. Lett. 2001; 3: 3041