Synlett 2013; 24(14): 1813-1817
DOI: 10.1055/s-0033-1339374
letter
© Georg Thieme Verlag Stuttgart · New York

New Approach to Sugar Dienes; Useful Building Blocks for the Synthesis of Bicyclic Derivatives

Grzegorz Witkowski
Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland   Fax: +48(22)6326681   eMail: slawomir.jarosz@icho.edu.pl
,
Sławomir Jarosz*
Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland   Fax: +48(22)6326681   eMail: slawomir.jarosz@icho.edu.pl
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 23. Mai 2013

Accepted after revision: 13. Juni 2013

Publikationsdatum:
26. Juli 2013 (online)


Abstract

A sugar aldehyde with silyl protection at C1, readily prepared from methyl α-d-glucopyranoside, reacted with allylborate or allylchromium reagents to afford the corresponding (anti) adducts, which were selectively converted into either E- or Z-diene. Deprotection of the anomeric position with TBAF proceeded in excellent yield, and further functionalization of the resulting hemiacetal led to the formation of complex bicyclic products such as highly functionalized oxazolidines.

Supporting Information

 
  • References and Notes

    • 1a Hanessian S. Total Synthesis of Natural Products: The Chiron Approach. Pergamon Press; New York: 1983
    • 1b Fraser-Reid B. Acc. Chem. Res. 1996; 29: 57 ; and references therein
    • 2a Arjona A, Gomez AM, Lopez JC, Plumet J. Chem. Rev. 2007; 107: 1919
    • 2b Zhou J, Wang G, Zhang L.-H, Ye X.-S. Curr. Org. Chem. 2006; 10: 625
    • 2c Podeschwa MA. L, Plettenburg O, Altenbach H.-J. Eur. J. Org. Chem. 2005; 3101
    • 2d Podeschwa MA. L, Plettenburg O, Altenbach H.-J. Eur. J. Org. Chem. 2005; 3116
    • 2e Freeman S, Hudlicky T. Bioorg. Med. Chem. Lett. 2004; 14: 1209 ; and references therein
    • 3a Ganem B. Acc. Chem. Res. 1996; 29: 340
    • 3b Bols M. Acc. Chem. Res. 1998; 31: 1
    • 3c Heightman TD, Vasella AT. Angew. Chem. Int. Ed. 1999; 38: 750
    • 3d Berecibar A, Grandjean C, Siriwardena A. Chem. Rev. 1999; 99: 779
    • 4a Nowogródzki M, Jarosz S. Curr. Org. Chem. 2010; 14: 533
    • 4b Nowogródzki M, Jarosz S. Curr. Org. Chem. 2010; 14: 601
    • 4c Jarosz S, Nowogródzki M, Magdycz M, Potopnyk MA. RSC Special Periodic Reports: Carbohydrate Chemistry 2012; 37: 303-325
    • 4d Nowogródzki N, Malik M, Jarosz S. Tetrahedron: Asymmetry 2012; 23: 1501

      For reviews, see:
    • 5a Jarosz S, Gaweł A. Eur. J. Org. Chem. 2005; 3415
    • 5b Jarosz S. Curr. Org. Chem. 2008; 12: 985
  • 6 Jarosz S, Szewczyk K, Zawisza A. Tetrahedron: Asymmetry 2003; 14: 1709
    • 7a Roush WR, Grovoer PT. Tetrahedron 1992; 48: 1981
    • 7b Roush WR, Grovoer PT. Tetrahedron Lett. 1990; 31: 7567
    • 7c Brinkmann H, Hoffmann RW. Chem. Ber. 1990; 123: 2395
    • 7d Wang KK, Liu C, Gu YG, Burnett FN, Sattsangi PD. J. Org. Chem. 1991; 56: 1914
    • 8a Hodgons DM, Wells C. Tetrahedron Lett. 1992; 33: 4761
    • 8b Paterson I, Florence GJ, Gerlach K, Scott JP, Sereinig N. J. Am. Chem. Soc. 2001; 123: 9535
    • 8c Marshall JA, Lu Z.-H, Johns BA. J. Org. Chem. 1998; 63: 817
    • 8d Paterson I, Delgado O, Florence GJ, Lyothier I, O’Brien M, Scott JP, Sereinig N. J. Org. Chem. 2005; 70: 150
    • 8e Paterson I, Schlapbach A. Synlett 1995; 498
  • 9 Jaramillo C, Chiara J.-L, Martin-Lomas M. J. Org. Chem. 1994; 59: 3135
  • 10 Andringa H, Heus-Kloos YA, Brandsma L. J. Organomet. Chem. 1987; 336: C41
  • 11 Okude Y, Hirano S, Hiyama T, Nozaki H. J. Am. Chem. Soc. 1977; 99: 3179
  • 12 Tsai DJ. T, Matteson DS. Tetrahedron Lett. 1981; 22: 2751
  • 13 Fürstner A, Shi N. J. Am. Chem. Soc. 1996; 118: 2533
    • 14a Dorgeret B, Soulier J.-L, Ongeri S, Khemtemourian L, Correia I, Lequin O. Eur. J. Org. Chem. 2011; 5959
    • 14b Ramirez F, Mandal SB, Marecek JF. J. Org. Chem. 1983; 48: 2008
    • 14c Kumari N, Olesen JK, Pedersen CM, Bols M. Eur. J. Org. Chem. 2011; 1266
    • 15a Lourenco EC, Maycock CD, Ventura MR. Carbohydr. Res. 2009; 344: 2073
    • 15b Bourke DG, Collins DJ, Hibberd AI, McLeod MD. Aust. J. Chem. 1996; 49: 425

      For bulky silyl β-glucosides, see:
    • 16a Nakahara Y, Ogawa T. Carbohydr. Res. 1988; 173: 306
    • 16b Soengas RG, Estevez JC, Estevez RJ. Tetrahedron 2003; 59: 6285
    • 16c Jiang Z.-H, Schmidt RR. Liebigs Ann. Chem. 1994; 645
  • 17 Synthesis of Dienes 18 and 19 Oxidation: Silyl pyranoside 16 (2.08 g, 3.02 mmol) and TEMPO (4.7 mg, 30.2 μmol) were dissolved in anhydrous CH2Cl2 (30 mL) and placed in a water/ice bath. Trichloroisocyanuric acid (0.77 g, 3.32 mmol) was added in one portion and, after 15 min, TLC (hexanes–EtOAc, 7:1) indicated the disappearance of starting material (Rf = 0.5) and formation of a new product (Rf = 0.4). The mixture was filtered through a Celite pad, diluted with Et2O (30 mL), and washed with 5% Na2S2O3 (10 mL), 1 M NaOH (25 mL), 1 M H2SO4 (25 mL), H2O (25 mL), and brine (25 mL), and concentrated. The residue was dissolved in toluene (50 mL) and evaporated to afford the crude aldehyde. Allylboronation: Crude aldehyde was dissolved in anhydrous toluene (30 mL) to which pinacol (E)-1-(trimethylsilyl)-1-propene-3-boronate (0.75 g, 3.02 mmol) was added. The mixture was stirred for 4 days, after which TLC (hexanes–EtOAc, 7:1) indicated the disappearance of starting material (Rf = 0.4) and formation of a two new products (Rf = 0.5 and 0.6). The solution was passed through a column of silica and concentrated to afford the crude silanol as a mixture of anti diastereomers. Elimination to (E)-diene 18: Crude silanol was dissolved in THF (70 mL), then concentrated sulfuric acid (7.2 mL, 134 mmol) was added within 5 min. After 10 min, TLC (hexanes–EtOAc, 7:1) indicated the disappearance of starting material (Rf = 0.5 and 0.6) and formation of a new product (Rf = 0.7). Et2O (140 mL) and H2O (70 mL) were added and the solution was saturated with NaCl. The phases were separated and the organic layer was dried and concentrated. The residue was purified by flash chromatography (hexanes–Et2O, 11:1→9:1→7:1→5:1) to afford 18 (71% yield from 16) as a colorless oil. Elimination to (Z)-diene 19: Crude silanol was dissolved in THF (70 mL) to which KH (30% in mineral oil, 1.80 g, 13.4 mmol) was added within 5 min. After 5 min, TLC (hexanes–EtOAc, 7:1) indicated the disappearance of starting material (Rf = 0.5 and 0.6) and formation of a new product (Rf = 0.7). Et2O (140 mL) and H2O (70 mL) were added and the solution was saturated with NaCl. The phases were separated and the organic layer was dried, concentrated, and the residue was purified by flash chromatography (hexanes–Et2O, 11:1→9:1→7:1→5:1) to afford 19 (76% yield from 16) as a colorless oil.
  • 18 De Luca L, Giacomelli G, Porcheddu A. Org. Lett. 2001; 3: 3041
    • 19a Baranowski B, Jurczak J. High Pressure Chemical Synthesis . Elsevier; New York: 1989
    • 19b Benito-López F, Egberink RM. J, Reinhoudt DN, Verboom W. Tetrahedron 2008; 64: 10023
    • 19c Kozłowska E, Jarosz S, Jeżewski A. Tetrahedron 1997; 53: 10775

      For olefin/oxime cyclization in sugar chemistry, see:
    • 20a Dransfield PJ, Moutel S, Shipman M, Sik V. J. Chem. Soc., Perkin Trans. 1 1999; 3349
    • 20b Magdycz M, Cmoch P, Jarosz S. Heterocycles 2010; 80: 1303
    • 20c Tatsuta K, Niwata Y, Umezawa K, Toshima K, Nakata M. Carbohydr. Res. 1991; 222: 189
    • 20d Shing TK, Wong WF, Cheng HM, Kwok WS, So KH. Org. Lett. 2007; 9: 753
    • 20e Peet NP, Huber EW, Farr RA. Tetrahedron 1991; 47: 7537
    • 20f Tatsuta K, Niwata Y, Umezawa K, Toshima K, Nakata M. Tetrahedron Lett. 1990; 31: 1171