Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2013; 24(18): 2389-2392
DOI: 10.1055/s-0033-1339707
DOI: 10.1055/s-0033-1339707
letter
Synthetic Routes toward Asymmetrically Substituted (Functionalized) 4H-Cyclopenta[2,1-b:3,4-b′]dithiophenes
Further Information
Publication History
Received: 31 July 2013
Accepted after revision: 14 August 2013
Publication Date:
03 September 2013 (online)

Abstract
A two-step synthetic protocol involving (i) a Wittig-type carbonyl olefination, and (ii) regioselective alkylation of the exocyclic double bond with LiAlH4 and an alkyl bromide, was developed as an alternative to the recently reported three-step synthetic approach toward asymmetrically substituted/functionalized 4H-cyclopenta[2,1-b:3,4-b′]dithiophenes. The two routes are rather complementary, with specific advantages depending on the desired substitution pattern, and are of particular appeal for the construction of semiconducting materials to be applied in organic photovoltaics.
Key words
cyclopentadithiophene - Friedel–Crafts cyclization - Wittig reaction - reduction - organic photovoltaicsSupporting Information
- for this article (additional experimental and characterization data, 1H NMR and 13C NMR spectra for the novel CPDTs, and additional data on the ring closure reaction) is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References and Notes
- 1a Senda T, Hanaoka H, Okado Y, Oda Y, Tsuguri H, Mashima K. Organometallics 2009; 28: 6915
- 1b De Rosa C, Auriemma F, Resconi L. Angew. Chem. Int. Ed. 2009; 48: 9871
- 2a Jorgensen M, Norrman K, Gevorgyan SA, Tromholt T, Andreasen B, Krebs FC. Adv. Mater. 2012; 24: 580
- 2b Zhou H, Yang L, You W. Macromolecules 2012; 45: 607
- 2c Li Y. Acc. Chem. Res. 2012; 45: 723
- 2d Su Y.-W, Lan S.-C, Wei K.-H. Mater. Today 2012; 15: 554
- 2e Janssen RA. J, Nelson J. Adv. Mater. 2013; 25: 1847
- 3a Lee UR, Lee TW, Hoang MH, Kang NS, Yu JW, Kim KH, Lim K.-G, Lee T.-W, Jin J.-I, Choi DH. Org. Electron. 2011; 12: 269
- 3b Hong Y.-R, Ng JY, Wong HK, Moh LC. H, Yip YJ, Chen ZK, Norsten TB. Sol. Energy Mater. Sol. Cells 2012; 102: 58
- 3c Cheng Y.-J, Ho Y.-J, Chen C.-H, Kaon W.-S, Wu C.-E, Hsu S.-L, Hsu C.-S. Macromolecules 2012; 45: 2690
- 3d Lee SK, Seo JH, Cho NS, Cho S. Thin Solid Films 2012; 520: 5438
- 3e Song S, Park S, Kwon S, Lee BH, Shim JY, Lee J, Park SH, Jin Y, Kim I, Lee K, Suh H. Sol. Energy. Mater. Sol. Cells 2012; 105: 229
- 3f Jiang J.-M, Yang P.-A, Yu C.-M, Lin H.-K, Huang K.-C, Wei K.-H. J. Polym. Sci. Part A: Polym. Chem. 2012; 50: 3960
- 3g Willot P, De Cremer L, Koeckelberghs G. Macromol. Chem. Phys. 2012; 213: 1216
- 3h Li Y, Zou J, Yip H.-L, Li C.-Z, Zhang Y, Chueh C.-C, Intemann J, Xu Y, Liang P.-W, Chen Y, Jen AK.-Y. Macromolecules 2013; 46: 5497
- 4 Rizzo S, Sannicolò F, Benincori T, Schiavon G, Zecchin S, Zotti G. J. Mater. Chem. 2004; 14: 1804
- 5a Sannicolò F, Brenna E, Benincori T, Zotti G, Zecchin S, Schiavon G. Chem. Mater. 1998; 10: 2167
- 5b Schmittel M, Lin H. J. Mater. Chem. 2008; 18: 333
- 6 Ko HC, Yom J, Moon B, Lee H. Electrochim. Acta 2003; 48: 4127
- 7a Pilar J.-F, Cougnon C, Rault-Berthelot J, Berthelot A, Hubert C, Tran K. J. Electroanal. Chem. 2004; 568: 195
- 7b Cougnon C, Gautier C, Pilar J.-F, Casse N, Chénais B. Biosens. Bioelectron. 2008; 23: 1171
- 8a Mühlbacher D, Scharber M, Morana M, Zhu Z, Waller D, Gaudiana R, Brabec C. Adv. Mater. 2006; 18: 2884
- 8b Peet J, Kim JY, Coates NE, Ma WL, Moses D, Heeger AJ, Bazan GC. Nat. Mater. 2007; 6: 497
- 8c Tsao HN, Cho D, Andreasen JW, Rouhanipour A, Breiby DW, Pisula W, Müllen K. Adv. Mater. 2009; 21: 209
- 8d Zoombelt AP, Mathijssen SG. J, Turbiez MG. R, Wienk MM, Janssen RA. J. J. Mater. Chem. 2010; 20: 2240
- 8e Kettle J, Horie M, Majewski LA, Saunders BR, Tuladhar S, Nelson J, Turner ML. Sol. Energy Mater. Sol. Cells 2011; 95: 2186
- 8f Horie M, Kettle J, Yu C.-Y, Majewski LA, Chang S.-W, Kirkpatrick J, Tuladhar SM, Nelson J, Saunders BR, Turner ML. J. Mater. Chem. 2012; 22: 381
- 8g Albrecht S, Janietz S, Schindler W, Frisch J, Kurpiers J, Kniepert J, Inal S, Pingel P, Fostiropoulos K, Koch N, Neher D. J. Am. Chem. Soc. 2012; 134: 14932
- 8h Henson ZB, Zhang Y, Nguyen T.-Q, Seo JH, Bazan GC. J. Am. Chem. Soc. 2013; 135: 4163
- 9a Van Mierloo S, Adriaensens PJ, Maes W, Lutsen L, Cleij TJ, Botek E, Champagne B, Vanderzande DJ. J. Org. Chem. 2010; 75: 7202
- 9b Van Mierloo S, Hadipour A, Spijkman M.-J, Van den Brande N, Ruttens B, Kesters J, D’Haen J, Van Assche G, de Leeuw DM, Aernouts T, Manca J, Lutsen L, Vanderzande DJ, Maes W. Chem. Mater. 2012; 24: 587
- 9c Marin L, Zhang Y, Robeyns K, Champagne B, Adriaensens P, Lutsen L, Vanderzande D, Bevk D, Maes W. Tetrahedron Lett. 2013; 54: 526
- 9d Marin L, Van Mierloo S, Zhang Y, Robeyns K, Champagne B, Adriaensens P, Lutsen L, Vanderzande D, Maes W. Tetrahedron 2013; 69: 2260
- 9e Kesters J, Ghoos T, Penxten H, Drijkoningen J, Vangerven T, Lyons DM, Lutsen L, Vanderzande D, Manca J, Maes W. Adv. Energy Mater. 2013; DOI: 10.1002/aenm.201300049
- 10a Kraak A, Wiersema AK, Jordens P, Wynberg H. Tetrahedron 1968; 24: 3381
- 10b Reynolds JR, Brzezinski JZ. Synthesis 2002; 1053
- 10c Park JH, Lee BY. Bull. Korean Chem. Soc. 2010; 31: 1064
- 11a Coppo P, Cupertino DC, Yeates SC, Turner ML. J. Mater. Chem. 2002; 12: 2597
- 11b Coppo P, Cupertino DC, Yeates SC, Turner ML. Macromolecules 2003; 36: 2705
- 12 Zotti G, Schiavon G, Berlin A, Fontana G, Pagani G. Macromolecules 1994; 27: 1938
- 13a Zotti G, Zecchin S, Schiavon G, Berlin A. Macromolecules 2001; 34: 3889
- 13b Zotti G, Zecchin S, Berlin A, Schiavon G, Giro G. Chem. Mater. 2001; 13: 43
- 13c Zotti G, Vercelli B, Berlin A. Chem. Mater. 2008; 20: 397
- 14 Li A, Gilbert TM, Klumpp A. J. Org. Chem. 2008; 73: 3654
- 15a Vandenbergh J, Conings B, Bertho S, Kesters J, Spoltore D, Esiner S, Zhao J, Van Assche G, Wienk MM, Maes W, Lutsen L, Van Mele B, Janssen RA. J, Manca J, Vanderzande DJ. M. Macromolecules 2011; 44: 8470
- 15b Bertho S, Campo B, Piersimoni F, Spoltore D, D’Haen J, Lutsen L, Maes W, Vanderzande D, Manca J. Sol. Energy Mater. Sol. Cells 2013; 110: 69
- 16 Kudla JC, Dolfen D, Schottler KJ, Koenen J.-M, Breusov D, Allard S, Scherf U. Macromolecules 2010; 43: 7864
- 17 It has to be mentioned that Turner et al. reported a successful Wittig reaction of CPDT-4-one 7 with dodecylidenetriphenylphosphorane: Coppo P, Adams H, Cupertino DC, Yeates SG, Turner ML. Chem. Commun. 2003; 2548
- 18 4-(Octylidene)-4H-cyclopenta[2,1-b:3,4-b′]dithiophene (8a): n-BuLi (4.0 mL of a 2.5 M solution in n-hexane, 10.0 mmol) was added to a solution of octyltriphenylphosphonium bromide (4.55 g, 10.0 mmol) in anhyd THF (30 mL) at –82 °C under N2 atmosphere. The mixture was stirred for 30 min at –82 °C and then a solution of CPDT-4-one 7 (1.48 g, 7.69 mmol) in anhyd THF (30 mL) was added. After stirring for an additional 30 min at this temperature, the mixture was allowed to reach r.t. The reaction was quenched with H2O and the aqueous layer was extracted with Et2O. After drying the combined organic layers over MgSO4, removal of the solvents in vacuo, and purification by column chromatography (SiO2, petroleum ether), a yellow oil was obtained (1.64 g, 74%). 1H NMR (300 MHz, CDCl3): δ = 7.27 (d, J = 4.7 Hz, 1 H), 7.13 (d, J = 4.8 Hz, 1 H), 7.12 (d, J = 4.8 Hz, 1 H), 7.08 (d, J = 4.9 Hz, 1 H), 6.44 (t, J = 7.8 Hz, 1 H), 2.68 (q, J = 7.5 Hz, 2 H), 1.62 (quint, J = 7.4 Hz, 2 H), 1.23–1.48 (m, 8 H), 0.89 (t, J = 6.8 Hz, 3 H).
- 19 4-(2-Ethylhexyl)-4-octyl-4H-cyclopenta[2,1-b:3,4-b′]dithiophene (10a; see ref. 9a): A solution of 2-ethylhexyl bromide (1.40 g, 7.25 mmol) and CPDT 8a (2.09 g, 7.25 mmol) in anhyd THF (25 mL) was added dropwise to a suspension of LiAlH4 (0.275 g, 7.25 mmol) in anhyd THF (10 mL) under N2 atmosphere at r.t. After 15 h, Et2O (50 mL) and aq HCl (1.0 M, 30 mL) were added carefully. The organic layer was separated and washed with aq NaHCO3 and H2O, followed by drying over MgSO4. Purification by column chromatography (SiO2, petroleum ether) and removal of the solvent under reduced pressure yielded a colorless oil (2.28 g, 78%).
For recent reviews on different aspects of OPV, see:
For recent materials including the CPDT building block, see: