Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2013; 24(17): 2297-2301
DOI: 10.1055/s-0033-1339710
DOI: 10.1055/s-0033-1339710
letter
Synthesis of Phenanthrenes by Cationic Chromium(III) Porphyrin-Catalyzed Dehydration Cycloaromatization
Further Information
Publication History
Received: 26 July 2013
Accepted after revision: 12 August 2013
Publication Date:
23 September 2013 (online)
Abstract
Readily available biphenyl derivatives with ortho oxirane moiety react in the presence of cationic chromiun(III) porphyrin catalyst to afford phenanthrenes. The reaction is considered to be triggered by activation of the oxirane moiety through coordination to the Lewis acidic cationic chromium to give aldehyde via 1,2-hydride shift, which reacts with arene through intramolecular electrophilic aromatic substitution and subsequent dehydration. The reaction allows constructing a variety of polycyclic aromatic and heteroaromatic compounds.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References and Notes
- 1a Chen Y.-H, Chou H.-H, Su T.-H, Chou P.-Y, Wu F.-I, Cheng C.-H. Chem. Commun. 2011; 47: 8865
- 1b Mitsuhashi R, Suzuki Y, Yamanari Y, Mitamura H, Kambe T, Ikeda N, Okamoto H, Fujiwara A, Yamaji M, Kawasaki N, Maniwa Y, Kubozono Y. Nature (London) 2010; 464: 76
- 1c Song S, Jin Y, Kim K, Kim SH, Shim YB, Lee K, Suh H. Tetrahedron Lett. 2008; 49: 3582
- 1d He B, Tian H, Geng Y, Wang F, Müllen K. Org. Lett. 2008; 10: 773
- 1e Kim H.-J, Lee E, Park H.-S, Lee M. J. Am. Chem. Soc. 2007; 129: 10994
- 1f Okamoto H, Kawasaki N, Kaji Y, Kubozono Y, Fujiwara A, Yamaji M. J. Am. Chem. Soc. 2008; 130: 10470
- 1g Machado AM, Munaro M, Martins TD, Dávila LY. A, Giro R, Caldas MJ, Atvars TD. Z, Akcelrud LC. Macromolecules 2006; 39: 3398
- 1h Shirai Y, Osgood AJ, Zhao Y, Yao Y, Saudan L, Yang H, Yu-Hung C, Alemany LB, Sasaki T, Morin JF, Guerrero JM, Kelly KF, Tour JM. J. Am. Chem. Soc. 2006; 128: 4854
- 1i Kurata H, Takehara Y, Kawase T, Oda M. Chem. Lett. 2003; 32: 538
- 1j Liu R, Farinha JP. S, Winnik MA. Macromolecules 1999; 32: 3957
- 1k Lewis FD, Burch EL. J. Phys. Chem. 1996; 100: 4055
- 2a Ran C, Xu D, Dai Q, Penning TM, Blair IA, Harvey RG. Tetrahedron Lett. 2008; 49: 4531
- 2b Kumar S, Saravanan S, Reuben P, Kumar A. J. Heterocycl. Chem. 2005; 42: 1345
- 2c Kumar S. J. Org. Chem. 2002; 67: 8842
- 2d Kumar S. J. Org. Chem. 1997; 62: 8535
- 3a Floyd AJ, Dyke SF, Ward SE. Chem. Rev. 1976; 76: 509
- 3b Kwon Y, Cho H, Kim S. Org. Lett. 2013; 15: 920
- 3c Lin Y.-D, Cho C.-L, Ko C.-W, Pulte A, Wu Y.-T. J. Org. Chem. 2012; 77: 9979
- 3d Xia Y, Liu Z, Xiao Q, Qu P, Ge R, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2012; 51: 5714
- 3e Kuninobu Y, Tatsuzaki T, Matsuki T, Takai K. J. Org. Chem. 2011; 76: 7005
- 3f Ye F, Shi Y, Zhou L, Xiao Q, Zhang Y, Wang J. Org. Lett. 2011; 13: 5020
- 3g Kim YH, Lee H, Kim YJ, Kim BT, Heo J.-N. J. Org. Chem. 2008; 73: 495
- 3h Mamane V, Louërat F, Iehl J, Abboud M, Fort Y. Tetrahedron 2008; 64: 10699
- 3i Jiang X, Kong W, Chen J, Ma S. Org. Biomol. Chem. 2008; 6: 3606
- 3j Wang Y, Burton DJ. Org. Lett. 2006; 8: 5295
- 3k Wang Y.-G, Cui S.-L, Lin X.-F. Org. Lett. 2006; 8: 1241
- 3l Some S, Dutta B, Ray JK. Tetrahedron Lett. 2006; 47: 1221
- 3m Fürstner A, Kennedy JW. J. Chem. Eur. J. 2006; 12: 7398
- 3n Yao T, Campo MA, Larock RC. J. Org. Chem. 2005; 70: 3511
- 3o Shen H.-C, Tang J.-M, Chang H.-K, Yang C.-W, Liu R.-S. J. Org. Chem. 2005; 70: 10113
- 3p Kanno K, Liu Y, Iesato A, Nakajima K, Takahashi T. Org. Lett. 2005; 7: 5453
- 3q Hayes ME, Shinokubo H, Danheiser RL. Org. Lett. 2005; 7: 3917
- 3r Yu S, Rabalakos C, Mitchell WD, Wulff WD. Org. Lett. 2005; 7: 367
- 3s Iuliano A, Piccioli P, Fabbri D. Org. Lett. 2004; 6: 3711
- 3t Yao T, Campo MA, Larock RC. Org. Lett. 2004; 6: 2677
- 3u Ciszek JW, Tour JM. Tetrahedron Lett. 2004; 45: 2801
- 3v Mamane V, Hannen P, Fürstner A. Chem. Eur. J. 2004; 10: 4556
- 3w Almeida JF, Castedo L, Fernández D, Neo AG, Romero V, Tojo G. Org. Lett. 2003; 5: 4939
- 3x Zhang Y, Herndon JW. Org. Lett. 2003; 5: 2043
- 3y Fürstner A, Mamane V. J. Org. Chem. 2002; 67: 6264
- 3z Krebs FC, Spanggaard H. J. Org. Chem. 2002; 67: 7185
- 4a Kaafarani BR, Wex B, Bauerb JA. K, Neckersa DC. Tetrahedron Lett. 2002; 43: 8227
- 4b Kraus GA, Hoover K, Zhang N. Tetrahedron Lett. 2002; 43: 5319
- 4c Harrowven DC, Nunn MI. T, Fenwick DR. Tetrahedron Lett. 2002; 43: 3185
- 4d Catellani M, Motti E, Baratta S. Org. Lett. 2001; 3: 3611
- 4e Yoshikawa E, Radhakrishnan KV, Yamamoto Y. J. Am. Chem. Soc. 2000; 122: 7280
- 4f Paredes E, Biolatto B, Kneeteman M, Mancini PM. Tetrahedron Lett. 2000; 41: 8079
- 5a Fujiwara K, Kurahashi T, Matsubara S. J. Am. Chem. Soc. 2012; 134: 5512
- 5b Wakabayashi R, Kurahashi T, Matsubara S. Org. Lett. 2012; 14: 4794
- 5c Ozawa T, Kurahashi T, Matsubara S. Org. Lett. 2012; 14: 3008
- 5d Terada T, Kurahashi T, Matsubara S. Heterocycles 2012; 85: 2415
- 6a Suda K, Kikkawa T, Nakajima S, Takanami T. J. Am. Chem. Soc. 2004; 126: 9554
- 6b Suda K, Baba K, Nakajima S, Takanami T. Chem. Commun. 2002; 2570
- 6c Suda K, Baba K, Nakajima S, Takanami T. Tetrahedron Lett. 1999; 40: 7243
- 6d Takanami T, Hirabe R, Ueno M, Hino F, Suda K. Chem. Lett. 1996; 1031
- 6e Schmidt JA. R, Lobkovsky EB, Coates GW. J. Am. Chem. Soc. 2005; 127: 11426
- 6f Zhou C.-Y, Chan PW. H, Che C.-M. Org. Lett. 2006; 8: 325
- 6g Nakano K, Kobayashi K, Ohkawara T, Imoto H, Nozaki K. J. Am. Chem. Soc. 2013; 135: 8456
- 7a Summerville DA, Jones RD, Hoffman BM, Basolo F. J. Am. Chem. Soc. 1977; 99: 8195
- 7b Garrison JM, Bruice TC. J. Am. Chem. Soc. 1989; 111: 191
- 7c Traylor TG, Miksztal AR. J. Am. Chem. Soc. 1989; 111: 7443
- 7d Crestoni ME, Fornarini S, Lanucara F, Warren JJ, Mayer JM. J. Am. Chem. Soc. 2010; 132: 4336
- 8a Maruoka K, Ooi T, Yamamoto H. J. Am. Chem. Soc. 1989; 111: 6431
- 8b Maruoka K, Ooi T, Nagahara S, Yamamoto H. Tetrahedron 1991; 47: 6983
- 8c Maruoka K, Ooi T, Yamamoto H. Tetrahedron 1992; 48: 3303
- 8d Jung ME, D’Amico DC. J. Am. Chem. Soc. 1993; 115: 12208
- 8e Maruoka K, Murase N, Bureau R, Ooi T, Yamamoto H. Tetrahedron 1994; 50: 3663
- 8f Sudha R, Narasimhan KM, Saraswathy VG, Sankararaman S. J. Org. Chem. 1996; 61: 1877
- 8g Bando T, Shishido K. Chem. Commun. 1996; 1357
- 8h Matsushita M, Maeda H, Kodama M. Tetrahedron Lett. 1998; 39: 3749
- 8i Ranu BC, Jana U. J. Org. Chem. 1998; 63: 8212
- 8j Anderson AM, Blazek JM, Garg P, Payne BJ, Mohan RS. Tetrahedron Lett. 2000; 41: 1527
- 8k Kimura T, Yamamoto N, Suzuki Y, Kawano K, Norimine Y, Ito K, Nagato S, Iimura Y, Yonaga M. J. Org. Chem. 2002; 67: 6228 ; see also ref. 4c–e
- 9 General Procedure for the Dehydrative Cycloaromatization The reaction was performed in a 15 mL sealed tube equipped with a Teflon-coated magnetic stirrer bar. A mixture of biphenylyloxirane 1 (0.3 mmol) and [Cr(TPP)]SbF6 (6.8 mg, 7.5 μmol) in DCE (3 mL) was heated at 100 °C for 2 h under argon atmosphere. The resulting reaction mixture was cooled at ambient temperature, filtered through a silica gel pad, and concentrated in vacuo. The residue was purified by flash silica gel column chromatography (20 g, 2 × 15 cm, hexane–EtOAc = 40:1) to give phenanthrene 2.
For some selected examples, see:
For reviews, see:
For some recent examples of synthesis of phenanthrenes, see:
For some examples of the use of metalloporphyrins in non-oxidative bond formation, see: