RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2014; 25(1): 148-152
DOI: 10.1055/s-0033-1339925
DOI: 10.1055/s-0033-1339925
letter
Synthesis of a Polymerizable Benzocyclobutene that Undergoes Ring-Opening Isomerization at Reduced Temperature
Weitere Informationen
Publikationsverlauf
Received: 04. September 2013
Accepted: 12. September 2013
Publikationsdatum:
21. November 2013 (online)

Abstract
1-Ethoxyvinylbenzocyclobutene is a substituted benzocyclobutene that undergoes radical polymerization to produce polymers that can be crosslinked at 100–150 °C. The 4- and 5-vinyl isomers are synthesized in a 1:4 ratio via a halogenated benzyne intermediate produced from anthranilic acid, followed by cycloaddition with ethyl vinyl ether and replacement of the halogen atom with a vinyl group.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References and Notes
- 1 Cava MP, Napier DR. J. Am. Chem. Soc. 1956; 78: 500
- 2 For a review, see: Thummel RP. Acc. Chem. Res. 1980; 13: 70
- 3a Kirchhoff RA, Carriere CJ, Bruza KJ, Rondan NG, Sammler RL. J. Macromol. Sci. Chem., A 1991; 28: 1079
- 3b Kirchhoff RA, Bruza KJ. Prog. Polym. Sci. 1993; 18: 85
- 3c Kirchhoff RA, Bruza KJ. CHEMTECH 1993; 23: 22
- 3d Hahn SF, Rondan NG In Polymeric Materials Encyclopedia . Vol. 1. CRC Press; Boca Raton: 1995: 453
- 4 Jensen FR, Coleman WE, Berlin AJ. Tetrahedron Lett. 1962; 15
- 5 Segura JL, Martín N. Chem. Rev. 1999; 99: 3199
- 6a Wong PK. US Patent 4708994, 1987 ; Chem. Abstr. 1988, 108, 132792.
- 6b Wong PK. US Patent 4776180, 1988 ; Chem. Abstr. 1987, 107, 177818.
- 6c Walker KA, Markoski LJ, Moore JS. Macromolecules 1993; 26: 3713
- 6d Deeter GA, Venkataraman D, Kampf JW, Moore JS. Macromolecules 1994; 27: 2647
- 7 Harth E, van Horn B, Lee VY, Germack DS, Gonzales CP, Miller RD, Hawker CJ. J. Am. Chem. Soc. 2002; 124: 8653
- 8a Wong PK. US 4698394, 1987 ; Chem. Abstr. 1988, 108, 6630.
- 8b Wong PK. US Patent 4722974, 1988 ; Chem. Abstr. 1988, 108, 6630.
- 9 Endo T, Chino K, Koizumi T, Takata T. J. Polym. Sci., Polym. Chem. Ed. 1995; 33: 707
- 10a Chino K, Takata T, Endo T. Macromolecules 1995; 28: 5947
- 10b Chino K, Takata T, Endo T. J. Polym. Sci., Polym. Chem. Ed. 1999; 37: 1555
- 10c Chino K, Endo T. J. Polym. Sci., Polym. Chem. Ed. 2000; 38: 3434
- 10d Sakellariou G, Baskaran D, Hadjichristidis N, Mays JW. Macromolecules 2006; 39: 3525
- 11 Chino K, Takata T, Endo T. Macromolecules 1997; 30: 6715
- 12 Chino K, Takata T, Endo T. J. Polym. Sci., Polym. Chem. Ed. 1999; 37: 59
- 13 Taton D, Gnanou Y. In Block Copolymers in Nanoscience . Lazzari M, Liu G, Lecommandoux S. Wiley-VCH; Weinheim: 2006: 9-35
- 14 Kirchhoff RA, Schrock AK, Hahn SF. US Patent 4724260, 1988 ; Chem. Abstr. 1988, 108, 95095.
- 15 Blomberg S, Ostberg S, Harth E, Bosman AW, van Horn B, Hawker CJ. J. Polym. Sci., Polym. Chem. Ed. 2002; 40: 1309
- 16 Makino N, Oohashi H. US Patent 6780567 B2, 2004 ; Chem. Abstr. 2013, 1620468.
- 17 For a review on arynes, see for example: Tadross PM, Stolz BM. Chem. Rev. 2012; 112: 3550
- 18a Klundt IL. Chem. Rev. 1970; 70: 471
- 18b Thummel RP. Acc. Chem. Res. 1980; 13: 70
- 19 Wasserman HH, Solodar J. J. Am. Chem. Soc. 1965; 87: 4002
- 20 Cooke MP, Widener RK. J. Org. Chem. 1987; 52: 1381
- 21 Logullo FM, Seitz AH, Friedman L. Org. Synth. 1968; 48: 12
- 22 Lloyd JB. F, Ongley PA. Tetrahedron 1965; 21: 2457
- 23a Kajigaeshi S, Kakinami T, Yamasaki H, Fujisaki S, Kondo M, Okamoto T. Chem. Lett. 1987; 2109
- 23b Kajigaeshi S, Kakinami T, Moriwaki M, Watanabe M, Fujisaki S, Okamoto T. Chem. Lett. 1988; 795
- 24 Kajigaeshi S, Kakinami T, Moriwaki M, Tanaka T, Fujisaki S, Okamoto T. Bull. Chem. Soc. Jpn. 1989; 62: 439
- 25 Pugh C, Dharia J, Arehart SV. Macromolecules 1997; 30: 4520
- 26 Himeshima Y, Sonoda T, Kobayashi H. Chem. Lett. 1983; 1211
- 27 Mohan KV. V. K, Narender N, Srinivsu P, Kulkarni SJ, Raghavan KV. Synth. Commun. 2004; 34: 2143
- 28 CAUTION: Benzenediazonium-2-carboxylates can react explosively to shock, scraping, or heating when dry. These compounds must remain wet with solvent. Reactions using benzenediazonium-2-carboxylate reagents are most safely performed in a Parr reactor.
- 29 Stiles M, Miller RG, Burckhardt U. J. Am. Chem. Soc. 1963; 85: 1792
- 30a Tamao K, Sumitani K, Kumada M. J. Am. Chem. Soc. 1972; 94: 4374
- 30b Tamao K, Sumitani K, Kiso Y, Zembayashi M, Fujioka A, Kodama S, Nakajima I, Minato A, Kumada M. Bull. Chem. Soc. Jpn. 1976; 49: 1958
- 30c Kajigaeshi S, Kakinami T, Tokiyama H, Hirakawa T, Okamoto T. Chem. Lett. 1987; 627
- 30d Shimomura O, Sato T, Tomita I, Suzuki M, Endo T. J. Polym. Sci., Polym. Chem. Ed. 1997; 35: 2813
- 31 4- and 5-Vinyl-1-ethoxybenzocyclobutene via Kumada Coupling 1-Ethoxyvinylbenzocyclobutene was prepared via a Kumada coupling in 50–75% yield as in the following example. A solution of iodinated 1-ethoxybenzocyclobutene (3.7 g, 14 mmol; 1:4 ratio of the 4- and 5-iodo isomers) in anhydrous Et2O (20 mL) was added dropwise over 30 min to Mg turnings (0.35 g, 14 mmol) in anhydrous THF (25 mL) at r.t. The solution was stirred at r.t. until 1H NMR analysis of MeOH-quenched aliquots confirmed that the formation of the Grignard reagent was complete (18 h). The solution was then transferred to the glass sleeve of a Parr reactor, followed by the addition of Ni(dppp)Cl2 (20 mg, 37 μmol) and vinyl bromide (2.0 g, 19 mmol). After stirring at r.t. for 12 h, the mixture was neutralized with 2% aq HCl (50 mL) and then extracted with Et2O (3 × 25 mL). The combined organic layers were washed with sat. aq NaHCO3 solution (2 × 30 mL) and H2O (30 mL), and dried over MgSO4. The product was purified32 by column chromatography using silica gel as the stationary phase (hexanes–Et2O, 4:1, Rf = 0.60) to yield 1.5 g (64%) of a colorless oil composed of a 1:4 ratio of the 4- and 5-vinyl-1-ethoxybenzocyclobutene isomers. 5-Vinyl-1-ethoxybenzocyclobutene 1H NMR (300 MHz, CDCl3): δ = 1.29 (t, 3 J = 7.0 Hz, 3 H, CH 3), 3.10 (dd, 2 J = 14.4 Hz, 3 J = 1.6 Hz, 1 H, CHHAr), 3.44 (dd, 2 J = 14.4 Hz, 3 J = 4.4 Hz, 1 H, CHHAr), 3.66 (dq, 2 J = 9.1 Hz, 3 J = 7.0 Hz, 1 H, OCHH), 3.73 (dq, 2 J = 9.1 Hz, 3 J = 7.0 Hz, 1 H, OCHH), 5.04 (dd, 3 J = 4.4 Hz, 3 J = 2.0 Hz, 1 H, CHOEt), 5.18 (dd, 3 J BX = 10.9 Hz, 2 J AB = 0.8 Hz, 1 H, HCH B,trans =), 5.68 (dd, 3 J AX = 17.6 Hz, 2 J AB = 0.9 Hz, 1 H, HCH A,cis =), 6.70 (dd, 3 J AX = 17.6 Hz, 3 J BX = 10.9 Hz, 1 H, CH X=), 7.09 (d, 3 Jortho = 8.4 Hz, 1 H, aromatic C3H), 7.24 (s, aromatic C6H), 7.35 (d, 3 Jortho = 8.5 Hz, 1 H, aromatic C4H). Anal. Calcd for C12H14O: C, 82.72; H, 8.10. Found: C, 82.46; H, 8.11.
- 32 Alternatively, an inhibitor such as pyrogallol can be added to the crude product, which can then be purified by distillation at 77 °C/1 mmHg.
For reviews, see:
See for example: