Synlett 2014; 25(3): 365-370
DOI: 10.1055/s-0033-1340323
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Partially N-Acetylated Chitooligosaccharides and Muropeptides

Emiliano Bedini*
Dipartimento di Scienze Chimiche, Università degli Studi di Napoli ‘Federico II’, Complesso Universitario Monte Sant’Angelo, Via Cintia 4,80126 Napoli, Italy   Fax: +39(81)674393   eMail: ebedini@unina.it
,
Luigi Cirillo
Dipartimento di Scienze Chimiche, Università degli Studi di Napoli ‘Federico II’, Complesso Universitario Monte Sant’Angelo, Via Cintia 4,80126 Napoli, Italy   Fax: +39(81)674393   eMail: ebedini@unina.it
,
Roberta Marchetti
Dipartimento di Scienze Chimiche, Università degli Studi di Napoli ‘Federico II’, Complesso Universitario Monte Sant’Angelo, Via Cintia 4,80126 Napoli, Italy   Fax: +39(81)674393   eMail: ebedini@unina.it
,
Sara Basso
Dipartimento di Scienze Chimiche, Università degli Studi di Napoli ‘Federico II’, Complesso Universitario Monte Sant’Angelo, Via Cintia 4,80126 Napoli, Italy   Fax: +39(81)674393   eMail: ebedini@unina.it
,
Diego Tufano
Dipartimento di Scienze Chimiche, Università degli Studi di Napoli ‘Federico II’, Complesso Universitario Monte Sant’Angelo, Via Cintia 4,80126 Napoli, Italy   Fax: +39(81)674393   eMail: ebedini@unina.it
,
Antonio Molinaro
Dipartimento di Scienze Chimiche, Università degli Studi di Napoli ‘Federico II’, Complesso Universitario Monte Sant’Angelo, Via Cintia 4,80126 Napoli, Italy   Fax: +39(81)674393   eMail: ebedini@unina.it
,
Michelangelo Parrilli
Dipartimento di Scienze Chimiche, Università degli Studi di Napoli ‘Federico II’, Complesso Universitario Monte Sant’Angelo, Via Cintia 4,80126 Napoli, Italy   Fax: +39(81)674393   eMail: ebedini@unina.it
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 07. Oktober 2013

Accepted after revision: 06. November 2013

Publikationsdatum:
16. Dezember 2013 (online)


Abstract

Partially N-acetylated chitooligosaccharides and muropeptides are referred to as microbial associated molecular patterns (MAMPs). To shed light on the molecular basis of their recognition by the innate immunity system of living organisms, their production in pure form is necessary. To this end, we present here the first synthetic strategy for the obtainment of a series of partially N-acetylated muropeptides as well as of a chitodisaccharide and a chitotetrasaccharide, all possessing a well-defined N-acetylation pattern.

Supporting Information

 
  • References and Notes

  • 3 Silipo A, Erbs G, Tomonori S, Dow JM, Parrilli M, Lanzetta R, Shibuya N, Newman M.-A, Molinaro A. Glycobiology 2010; 20: 406
  • 4 Vollmer W, Blanot D, de Pedro MA. FEMS Microbiol. Rev. 2008; 32: 149
  • 5 Chaput C, Boneca I. Microbes Infect. 2007; 9: 637
  • 6 Gobert V, Gottar M, Matskevich AA, Rutschmann S, Royet J, Belvin M, Hoffmann JA, Ferrandon D. Science 2003; 302: 2126
  • 7 Gust AA, Biswas R, Lenz HD, Rauhut T, Ranf S, Kemmerling B, Götz F, Glawischnig E, Lee J, Felix G, Nürnberger T. J. Biol. Chem. 2007; 282: 32338
  • 8 Vollmer W. FEMS Microbiol. Rev. 2008; 32: 287
  • 9 Davis KM, Weiser JN. Infect. Immun. 2011; 79: 562
  • 10 Vollmer W, Tomasz A. Infect. Immun. 2002; 70: 7176
    • 11a Boneca IG, Dussurget O, Cabanas D, Nahori M.-A, Sousa S, Lecuit M, Psylinakis E, Bouriotis V, Hugot J.-P, Giovannini M, Coyle A, Bertin J, Namane A, Rousselle J.-C, Cayet N, Prévost M.-C, Balloy V, Chignard M, Philpott DJ, Cossart P, Girardin SE. Proc. Natl. Acad. Sci. U.S.A. 2007; 104: 997
    • 11b Ge W, Olczak A, Forsberg LS, Maier RJ. J. Biol. Chem. 2009; 284: 6790
  • 12 Erbs G, Silipo A, Aslam S, De Castro C, Liparoti V, Flagiello V, Pucci P, Lanzetta R, Parrilli M, Molinaro A, Newman M.-A, Cooper RM. Chem. Biol. 2008; 15: 438
  • 15 Kawada T, Yoneda Y. Monatsh. Chem. 2009; 140: 1251
  • 18 Cai J, Davison BE, Robin Ganellin C, Thaisrivongs S, Wibley KS. Carbohydr. Res. 1997; 300: 109
  • 20 See the Supporting Information for experimental procedures and characterization data of all the new products.
  • 22 A solution of 10 (10.7 mg, 13.2 μmol) in CH2Cl2 (500 μL) was diluted with MeOH (1.0 mL), AcOH (600 μL) and H2O (500 μL). The resulting monophasic, clear solution was treated with Pearlman’s catalyst (16.0 mg, 22.8 μmol). The mixture was stirred under a H2 atmosphere at r.t. overnight, then filtered on a Celite pad. Volatiles were removed by rotoevaporation. The residue was freeze-dried to give a yellowish powder that was purified by HPLC (0.05% v/v TFA–H2O to 0.05% v/v TFA–MeOH). Pure 1 (3.7 mg, 66%) was obtained as a white powder: [α]D 22 +33 (c = 0.2, H2O); 1H NMR (500 MHz, D2O): δ = 4.89 (d, J = 3.0 Hz, 1 H), 4.88 (d, J = 8.5 Hz, 1 H), 3.95–3.85 (m, 6 H), 3.80–3.75 (m, 2 H), 3.71–3.63 (m, 2 H), 3.55–3.43 (m, 3 H), 3.14 (dd, J = 10.5, 8.5 Hz, 1 H), 2.04 (s, 3 H), 1.60 (sext., J = 7.0 Hz, 2 H), 0.91 (t, J = 7.0 Hz, 3 H); 13C NMR (100 MHz, D2O): δ = 175.1, 98.1, 97.2, 77.8, 77.0, 72.6, 70.8, 70.7, 70.2, 69.7, 61.0, 60.9, 56.5, 54.4, 22.5, 10.5; MS (MALDI TOF): m/z = 425.08 [M + H]+ .
  • 23 A mixture of 12 (62.0 mg, 62.9 μmol) and 15 (152 mg, 126 μmol) was coevaporated three times with anhydrous toluene (3 mL). The mixture was dried and then mixed with AW-300 4 Å molecular sieves under Ar. The mixture was then suspended in CH2Cl2 (7.0 mL) and cooled to –30 °C. After a few minutes stirring at –30 °C, the mixture was treated with a 0.13 M solution of TMSOTf in CH2Cl2 (39 μL, 5.07 μmol). After 1 h stirring at –30 °C, two drops of Et3N were added. The mixture was then filtered over a Celite pad and concentrated. The residue was subjected to column chromatography (14:1 to 8:1 v/v toluene–EtOAc) to afford 16 (91.7 mg, 72%) as a white foam: [α]D 22 –20.6 (c = 1.0, CH2Cl2); 1H NMR (600 MHz, CDCl3): δ = 7.37–7.25 (m, 40 H, H-Ar), 7.07 (d, J = 8.6 Hz, 2 H), 6.80 (d, J = 8.6 Hz, 2 H), 5.87 (m, 1 H), 5.31–5.27 (m, 2 H), 5.22 (dd, J = 10.4, 1.2 Hz, 1 H), 5.16 (d, J = 12.5 Hz, 1 H), 5.11–4.98 (m, 5 H), 4.93 (d, J = 3.6 Hz, 1 H), 4.82 (d, J = 10.9 Hz, 1 H), 4.78 (d, J = 10.9 Hz, 1 H), 4.70–4.57 (m, 8 H), 4.51–4.43 (m, 5 H), 4.37 (d, J = 9.4 Hz, 1 H), 4.34 (d, J = 12.2 Hz, 1 H), 4.30–4.23 (m, 3 H), 4.19 (dd, J = 14.1, 6.6 Hz, 1 H), 4.17 (d, J = 9.4 Hz, 1 H), 4.06 (dt, J = 10.3, 3.7 Hz, 1 H), 4.01–3.93 (m, 5 H), 3.87–3.80 (m, 2 H), 3.79 (s, 3 H), 3.72–3.60 (m, 5 H), 3.54 (d, J = 8.5 Hz, 1 H), 3.44–3.39 (m, 3 H), 3.29 (d, J = 7.9 Hz, 1 H), 3.25–3.08 (m, 5 H), 2.96 (d, J = 9.7 Hz, 1 H); 13C NMR (50 MHz, CDCl3): δ = 159.3, 155.2, 154.9, 154.1, 153.9, 138.6, 138.4, 138.0, 137.9, 137.7, 137.3, 135.4, 133.1, 130.1, 129.4-127.5, 118.4, 113.8, 100.9, 100.8, 100.3, 96.3, 95.6, 95.4, 83.1, 81.2, 77.6, 77.3, 75.6, 75.3, 75.0, 74.8, 74.4, 73.5, 73.1, 70.3, 69.6, 68.7, 68.6, 67.9, 67.7, 67.6, 66.4, 66.0, 56.5, 55.2, 54.2; MS (MALDI TOF): m/z = 2053.40 [M + Na]+ .
  • 24 A solution of 18 (16.3 mg, 10.9 μmol) in CH2Cl2 (400 μL) was diluted with MeOH (2.0 mL), AcOH (800 μL) and H2O (400 μL), and the resulting monophasic, clear solution was treated with Pearlman’s catalyst (16.0 mg, 22.8 μmol). The mixture was stirred under a H2 atmosphere at r.t. overnight, then filtered on a Celite pad. Volatiles were removed by rotoevaporation. The residue was freeze-dried to give a white powder that was purified by HPLC (0.05% v/v TFA–H2O to 0.05% v/v TFA–MeOH). Pure 2 (4.7 mg, 55%) was obtained as a white powder: [α]D 22 +2.3 (c = 0.4, H2O); 1H NMR (600 MHz, D2O): δ = 4.88 (d, J = 4.6 Hz, 1 H), 4.82 (d, J = 8.3 Hz, 2 H), 4.58 (d, J = 7.8 Hz, 1 H), 3.94–3.84 (m, 10 H), 3.79–3.75 (m, 5 H), 3.70–3.64 (m, 5 H), 3.57 (m, 2 H), 3.48 (m, 2 H), 3.16 (t, J = 8.3 Hz, 1 H), 3.14 (t, J = 8.3 Hz, 1 H), 2.06 (s, 3 H), 2.04 (s, 3 H), 1.60 (sext., J = 7.0 Hz, 2 H), 0.91 (t, J = 7.0 Hz, 3 H); 13C NMR (150 MHz, D2O): δ = 175.4, 175.1, 102.2, 99.0, 97.4, 79.3, 77.7, 77.1, 75.8, 75.1, 73.1, 72.1, 70.9, 70.4, 69.8, 61.1, 61.0, 60.4, 56.5, 56.2, 54.5, 22.9, 22.7, 22.6, 10.6; MS (MALDI TOF): m/z = 789.13 [M + H]+ .
  • 25 Li J, Sha Y. Molecules 2008; 13: 1111
  • 26 A solution of 22 (26.6 mg, 27.1 μmol) in CH2Cl2 (300 μL) was diluted with MeOH (900 μL), AcOH (600 μL) and H2O (600 μL), and the resulting monophasic, clear solution was treated with Pearlman’s catalyst (26.6 mg, 37.9 μmol). The mixture was stirred under a H2 atmosphere at r.t. overnight, then filtered on a Celite pad. Volatiles were removed by rotoevaporation and the residue was freeze-dried to give a yellowish powder that was purified by HPLC (0.05% v/v TFA–H2O to 0.05% v/v TFA–MeOH). Pure 4 (7.5 mg, 53%) was obtained as a white powder: [α]D 22 +44 (c = 0.2, H2O); 1H NMR (600 MHz, D2O): δ = 4.93 (d, J = 3.6 Hz, 1 H), 4.82 (d, J = 8.2 Hz, 1 H), 4.40 (q, J = 7.1 Hz, 1 H), 4.37 (q, J = 8.2 Hz, 1 H), 4.06 (t, J = 9.3 Hz, 1 H), 3.96 (m, 2 H), 3.87 (m, 2 H), 3.82 (t, J = 10.2 Hz, 1 H), 3.76 (m, 2 H), 3.69 (t, J = 9.6 Hz, 1 H), 3.64 (m, 1 H), 3.51 (m, 1 H), 3.44 (m, 2 H), 3.14 (dd, J = 9.6, 8.2 Hz, 1 H), 1.99 (s, 3 H), 1.59 (sext, J = 7.4 Hz, 2 H), 1.45 (d, J = 8.2 Hz, 3 H), 1.38 (d, J = 7.1 Hz, 3 H), 0.90 (t, J = 7.4 Hz, 3 H); 13C NMR (150 MHz, D2O): δ = 177.0, 175.7, 174.5, 98.1, 97.4, 78.5, 77.4, 77.3, 75.1, 72.6, 71.3, 70.4, 61.7, 60.9, 57.2, 53.9, 49.2, 22.8, 22.5, 19.1, 17.3, 10.4; MS (MALDI TOF): m/z = 568.16 [M + H]+ .
  • 27 Kelly RC, Gebhard I, Wicnienski N. J. Org. Chem. 1986; 51: 4590
  • 28 A solution of 20 (30.9 mg, 33.9 μmol) and 23 (133 mg, 305 μmol) in DMF (1.25 mL) was treated with a 0.27 M solution of PyBOP in DMF (250 μL), then with a 0.27 M solution of HOBt in DMF (250 μL) and finally with DIPEA (65 μL, 280 μmol). After 3 h stirring at r.t., the reaction mixture was diluted with CH2Cl2 (50 mL) and washed with 0.1 M HCl (50 mL). The organic phase was collected, dried over anhydrous Na2SO4, filtered, and concentrated. After column chromatography (3:1 to 1:3 v/v n-hexane–EtOAc), pure 27 (32.4 mg, 79%) was obtained as a colorless oil: [α]D 22 +13.7 (c = 2.0, CH2Cl2); 1H NMR (600 MHz, CDCl3): δ = 7.33–7.26 (m, 20 H), 7.02 (d, J = 8.6 Hz, 2 H), 6.79 (d, J = 8.6 Hz, 2 H), 5.82 (m, 1 H), 5.23 (dd, J = 17.2, 1.5 Hz, 1 H), 5.16 (dd, J = 10.4, 1.5 Hz, 1 H), 5.11 (d, J = 12.3 Hz, 1 H), 5.08 (d, J = 12.3 Hz, 1 H), 5.07 (d, J = 3.9 Hz, 1 H), 4.80 (s, 2 H), 4.69 (d, J = 12.0 Hz, 1 H), 4.65 (d, J = 10.5 Hz, 1 H), 4.57 (dq, J = 7.9, 5.0 Hz, 1 H), 4.51 (d, J = 11.8 Hz, 1 H), 4.46–4.41 (m, 4 H), 4.36 (app. quint., J = 7.0 Hz, 1 H), 4.21 (d, J = 8.2 Hz, 1 H), 4.08 (dd, J = 13.0, 5.2 Hz, 1 H), 4.03–3.93 (m, 4 H), 3.76 (s, 3 H), 3.74 (d, J = 9.9 Hz, 1 H), 3.70–3.56 (m, 8 H), 3.29 (dd, J = 9.8, 8.3 Hz, 1 H), 3.22 (t, J = 9.0 Hz, 1 H), 3.19 (m, 1 H), 2.38–2.29 (m, 2 H), 2.23–2.15 (m, 1 H), 2.05–1.98 (m, 1 H), 1.98 (s, 3 H), 1.35 (d, J = 7.4 Hz, 3 H), 1.33 (d, J = 7.5 Hz, 3 H); 13C NMR (100 MHz, CDCl3): δ = 174.7, 173.3, 172.1, 171.5, 171.4, 159.2, 137.9, 137.7, 137.5, 137.4, 133.7, 130.0, 128.7-127.6, 117.6, 113.9, 100.8, 96.1, 83.2, 76.7, 76.4, 75.3, 74.4, 74.3, 73.4, 73.1, 71.8, 70.6, 68.5, 68.3, 67.8, 67.3, 66.4, 55.2, 53.9, 53.8, 51.9, 51.7, 49.2, 29.8, 26.8, 23.1, 19.3, 17.8; MS (MALDI TOF): m/z = 1238.19 [M + Na]+ .
  • 29 Adinolfi M, Iadonisi A, Ravidà A, Valerio S. Tetrahedron Lett. 2006; 47: 2595