Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2014; 25(5): 713-717
DOI: 10.1055/s-0033-1340669
DOI: 10.1055/s-0033-1340669
letter
Stereoselective Synthesis of Dioxolanes and Oxazolidines via a Desymmetrization Acetalization/Michael Cascade
Further Information
Publication History
Received: 04 October 2013
Accepted after revision: 02 January 2014
Publication Date:
10 February 2014 (online)
Abstract
The desymmetrization of p-quinols using a Brønsted acid catalyzed acetalization/Michael cascade was achieved in high yields and diastereoselectivities for aldehydes and imines. Use of a chiral Brønsted acid allowed for the synthesis of 1,3-dioxolane and 1,3-oxazolidine products in modest enantioselectivity.
Key words
acetals - desymmetrization - Michael addition - stereoselective synthesis - cascade catalysisSupporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References and Notes
- 1a Perron F, Albizati KF. Chem. Rev. 1989; 89: 1617
- 1b Aho JE, Pihko PM, Rissa TK. Chem. Rev. 2005; 105: 4406
- 1c Mavragani CP, Moutsopoulos HM. Clinic Rev. Allerg. Immunol. 2007; 32: 287
- 1d Scott JD, Williams RM. Chem. Rev. 2002; 102: 1669
- 2a Seebach D, Sting AR, Hoffmann M. Angew. Chem. Int. Ed. 1996; 35: 2708
- 2b Fache F, Schulz E, Tommasino ML, Lemaire M. Chem. Rev. 2000; 100: 2159
- 2c Agami C, Couty F. Eur. J. Org. Chem. 2004; 677
- 3a Frauenrath H, Philipps T. Angew. Chem., Int. Ed. Engl. 1986; 25: 274
- 3b Frauenrath H, Reim S, Wiesner A. Tetrahedron: Asymmetry 1998; 9: 1103
- 3c Burke SD, Müller N, Beaudry CM. Org. Lett. 1999; 1: 1827
- 3d Fletcher SJ, Rayner CM. Tetrahedron Lett. 1999; 40: 7139
- 3e Weatherhead GS, Houser JH, Ford JG, Jamieson JY, Schrock RR, Hoveyda AH. Tetrahedron Lett. 2000; 41: 9553
- 3f Hoveyda AH, Schrock RR. Chem. Eur. J. 2001; 7: 945
- 4a Cheng X, Vellalath S, Goddard R, List B. J. Am. Chem. Soc. 2008; 130: 15787
- 4b Čorić I, Vellalath S, List B. J. Am. Chem. Soc. 2010; 132: 8536
- 4c Čorić I, Müller S, List B. J. Am. Chem. Soc. 2010; 132: 17370
- 4d Čorić I, List B. Nature (London) 2012; 483: 315
- 4e Sun Z, Winschel GA, Borovika A, Nagorny P. J. Am. Chem. Soc. 2012; 134: 8074
- 4f Kim JH, Čorić I, Vellalath S, List B. Angew. Chem. Int. Ed. 2013; 52: 4474
- 5 Nagano H, Katsuki T. Chem. Lett. 2002; 31: 782
- 6a Rowland GB, Zhang H, Rowland EB, Chennamadhavuni S, Wang Y, Antilla JC. J. Am. Chem. Soc. 2005; 127: 15696
- 6b Liang Y, Rowland EB, Rowland GB, Perman JA, Antilla JC. Chem. Commun. 2007; 4477
- 6c Li G.-L, Fronczek FR, Antilla JC. J. Am. Chem. Soc. 2008; 130: 12216
- 6d Cheng X, Vellalath S, Goddard R, List B. J. Am. Chem. Soc. 2008; 130: 15786
- 6e Rueping M, Antonchick AP, Sugiono E, Grenader K. Angew. Chem. Int. Ed. 2009; 48: 908
- 7a Jefford CW, Jaggi D, Kohmoto S, Boukouvalas J. Helv. Chim. Acta 1984; 67: 2254
- 7b Jefford CW, Rossier JC, Kohmoto S, Boukouvalas J. Synthesis 1985; 29
- 7c Jefford CW, Jaggi D, Boukouvalas J, Kohmoto S. J. Am. Chem. Soc. 1983; 105: 6497
- 7d Jefford CW, Kohmoto S, Boukouvalas J, Burger U. J. Am. Chem. Soc. 1983; 105: 6498
- 8a Evans DA, Gauchet-Prunet JA. J. Org. Chem. 1993; 58: 2446
- 8b Watanabe H, Machida K, Itoh D, Nagatsuka H, Kitahara T. Chirality 2001; 13: 379
- 8c Redondo MC, Ribagorda M, Carreño MC. Org. Lett. 2010; 12: 568
- 8d Evans PA, Grisin A, Lawler MJ. J. Am. Chem. Soc. 2012; 134: 2856
- 9a Asano K, Matsubara S. Org. Lett. 2012; 14: 1620
- 9b Okamura T, Asano K, Matsubara S. Chem. Commun. 2012; 48: 5076
- 9c Fukata Y, Miyaji R, Okamura T, Asano K, Matsubara S. Synthesis 2013; 45: 1627
- 9d Fukata Y, Asano K, Matsubara S. Chem. Lett. 2013; 42: 355
- 10 Rubush DM, Morges MA, Rose BJ, Thamm DH, Rovis T. J. Am. Chem. Soc. 2012; 134: 13554
- 11a Carreño MC, González-López M, Urbano A. Angew. Chem. Int. Ed. 2006; 45: 2737
- 11b Barradas S, Carreño MC, González-López M, Latorre A, Urbano A. Org. Lett. 2007; 9: 5019
- 11c Barradas S, Urbano A, Carreño MC. Chem. Eur. J. 2009; 15: 9286
- 12 The stereochemistry of the 1,3-dioxolane was confirmed using nuclear Overhauser effect (NOE) experiments on the minor diastereomer.
- 13 A 1.5 dram vial was charged with a magnetic stir bar, 4-methyl-4-hydroxycyclohexa-2,5-dienone (1; 0.25 mmol, 1.0 equiv), diphenylphosphinic acid (18 mg, 0.025 mmol, 0.1 equiv), aldehyde/imine (0.31 mmol, 1.25 equiv), and 1,2-dichloroethane or CH2Cl2 (1.0 mL, 0.25 M). The vial was then sealed and stirred at r.t. until the starting material disappeared by TLC (6–48 h). In some cases the reaction was heated to 45 °C. The reaction was concentrated in vacuo. Flash column chromatography (10–20% hexanes–EtOAc) of the resulting clear or yellow residue gave the analytically pure product in high diastereoselectivity as a white solid or clear oil. Some products decompose slowly upon treatment with SiO2 (via acetal hydrolysis) so fast column chromatography is optimal.
- 14 Gómez-Bombarelli R, González-Pérez M, Pérez-Prior MT, Calle E, Casado J. J. Phys. Chem. A 2009; 113: 11423
For examples of organocatalytic asymmetric acetal synthesis, see:
For examples of organocatalytic asymmetric aminal formation, see:
For examples of diastereoselective cyclic acetal syntheses by intramolecular oxy-Michael addition via hemiacetal formation, see: