Synlett 2014; 25(07): 945-950
DOI: 10.1055/s-0033-1340891
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis, Photophysical and Electrochemical Studies on Triazole-Based Phthalimidodendrimers

Mahalingam Ravivarma
Department of Organic chemistry, University of Madras, Guindy Campus, Chennai 600025, India   Fax: +91(44)22352492   Email: perumalrajakumar@gmail.com
,
Chinnadurai Satheeshkumar
Department of Organic chemistry, University of Madras, Guindy Campus, Chennai 600025, India   Fax: +91(44)22352492   Email: perumalrajakumar@gmail.com
,
Perumal Rajakumar*
Department of Organic chemistry, University of Madras, Guindy Campus, Chennai 600025, India   Fax: +91(44)22352492   Email: perumalrajakumar@gmail.com
› Author Affiliations
Further Information

Publication History

Received: 31 December 2013

Accepted after revision: 09 February 2014

Publication Date:
18 March 2014 (online)


Abstract

The synthesis of dendrimers with phthalimide as the surface group and 1,2,3-triazole as bridging unit is described using click chemistry in a convergent approach. The photophysical properties indicate an increase in the molar extinction coefficient as the generation of the dendrimer increases. In cyclic voltammetry studies, the dendrimers show two reversible redox peaks due to formation of a radical anion and a dianion of the phthalimido moiety.

Supporting Information

 
  • References and Notes

  • 1 Medina SH, El-Sayed ME. H. Chem. Rev. 2009; 109: 3141
  • 2 King AS. H, Twyman LJ. J. Chem. Soc., Perkin Trans. 1 2002; 2209
  • 3 Link AJ, Vink MK. S, Tirrell DA. J. Am. Chem. Soc. 2004; 126: 10598
  • 4 Cho JS, Kimoto A, Higuchi M, Yamamoto K. Macromol. Chem. Phys. 2005; 206: 635
  • 5 Zhang F, Luo YH, Song JS, Guo XZ, Liu WL, Ma CP, Huang Y, Ge MF, Bo Z, Meng QB. Dyes Pigments 2009; 81: 224
  • 6 Helms B, Meijer AE. Science 2006; 313: 929
  • 7 Li Z, Yu G, Wu W, Liu Y, Ye C, Qin J, Li Z. Macromolecules 2009; 42: 3864
  • 8 Bock VD, Hiemstra H, van Maarseveen JH. Eur. J. Org. Chem. 2006; 1: 51
  • 9 Ervithayasuporn V, Abe J, Wang X, Matsushima T, Murata H, Kawakami Y. Tetrahedron 2010; 66: 9348
    • 10a Kumar A, Pandey PS. Tetrahedron Lett. 2009; 50: 5842
    • 10b Sanji T, Nakamura M, Tanaka M. Tetrahedron Lett. 2011; 52: 3283
  • 11 Li Z, Wu W, Li Q, Yu G, Xiao L, Liu Y, Ye C, Qin J, Li Z. Angew. Chem. 2010; 122: 2823
  • 12 Medina SH, El-Sayed ME. H. Chem. Rev. 2009; 109: 3141
  • 13 Weiwer M, Chen C, Kemp MM, Linhardt RJ. Eur. J. Org. Chem. 2009; 16: 2611
  • 14 Rajakumar P, Satheeshkumar C, Raja S. Tetrahedron Lett. 2010; 51: 5167
  • 15 Rajakumar P, Raja R. Tetrahedron Lett. 2010; 51: 4365
  • 16 Rajakumar P, Kalpana V, Ganesan S, Maruthamuthu P. Tetrahedron Lett. 2011; 52: 5812
  • 17 Rajakumar P, Satheeshkumar C, Ravivarma M, Ganesan S, Maruthamuthu P. J. Mater. Chem. A 2013; 1: 13941
  • 18 Chan SH, Lam KH, Chui CH, Gambari R, Yuen MC. W, Wong RS. M, Cheng GY. M, Lau FY, Au YK, Cheng CH, Lai PB. S, Kan CW, Kok SH. L, Tang JC. O, Chan AS. C. Eur. J. Med. Chem. 2009; 44: 2736
  • 19 Machado AL, Lina LM, Arajo JX. Jr, Fraga CA. M, Koatz VL. G, Barreiro EJ. Bioorg. Med. Chem. Lett. 2005; 15: 1169
  • 20 Kok SH. L, Gambari R, Chui CH, Yuen MC. W, Lin E, Wong RS. M, Lau FY, Gregory Cheng YM, Lam WS, Chan SH, Lam KH, Cheng CH, Lai PB. S, Yu MW. Y, Cheung F, Tanga JC. O, Chana AS. C. Bioorg. Med. Chem. 2008; 16: 3626
  • 21 Vamecq J, Lambert D, Poupaert JH, Masereel B, Stables JP. J. Med. Chem. 1998; 41: 3307
  • 22 Kolhatkar RB, Kitchens KM, Swaan PW, Ghandehari H. Bioconjugate Chem. 2007; 18: 2054
  • 23 Vamecq J, Bac P, Herrenknecht C, Maurois P, Delcourt P, Stables JP. J. Med. Chem. 2000; 43: 1311
  • 24 Sharma U, Kumar P, Kumar N, Singh B. Mini-Rev. Med. Chem. 2010; 10: 678
  • 25 Morse GE, Castrucci JS, Helander MG, Lu ZH, Bender TP. ACS Appl. Mater. Interfaces 2011; 3: 3538
  • 26 Achard T, Lepronier A, Gimbert Y, Clavier H, Giordano L, Tenaglia A, Buono G. Angew. Chem. Int. Ed. 2011; 50: 3552
  • 27 Sioda RE, Koski WS. J. Am. Chem. Soc. 1967; 89: 475
  • 28 General Procedure for the Cu-Catalyzed Huisgen Click Reaction: A mixture of azide [8 (0.50 equiv), 9 (0.33 equiv), 10 (0.25 equiv) or 11 (0.50 equiv)], alkyne 7 or 13 (1.0 equiv), CuSO4·5H2O (5 mol%), and sodium ascorbate (10 mol%) in a mixture of t-BuOH–H2O (1:1, 20 mL) was stirred for 10 h at r.t. The residue obtained after evaporation of the solvent was washed thoroughly with H2O and dissolved in CHCl3 (150 mL). The organic layer was separated, washed with brine (150 mL), dried (anhyd Na2SO4), filtered and evaporated to give the crude triazole, which was purified by column chromatography (SiO2) using the eluent as mentioned under each compound.
  • 29 Phenolic Dendron 12: The crude product was purified by chromatography using CHCl3–MeOH (9:2) as eluent to give the phenolic dendron 12 as a colorless solid in 87% yield; mp 124 ºC. 1H NMR (300 MHz, CDCl3): δ = 4.82 (s, 4 H), 5.43 (s, 4 H), 6.56 (s, 2 H), 6.70 (s, 1 H), 7.86–7.88 (m, 8 H), 8.10 (s, 2 H), 9.69 (s, 1 H). 13C NMR (75 MHz, CDCl3): δ = 32.9, 52.5, 114.3, 117.8, 123.1, 123.3, 131.5, 134.5, 137.7, 142.4, 157.8, 167.8, 167.3. MS (ESI): m/z = 575.3 [M + 1]+. Anal Calcd for C30H22N8O5: C, 62.71; H, 3.86; N, 19.50. Found: C, 62.61; H, 3.74; N, 19.57.
  • 30 Synthesis of Alkyne Dendron 13: A mixture of phenolic dendron 12 (0.32 g, 0.06 mmol) and propargyl bromide (0.07 mL, 0.72 mmol) and K2CO3 (1.0 g, 6.7 mmol) was stirred for 24 h in DMF (15 mL) at r.t. After completion of reaction, the reaction mixture was poured into H2O and extracted with CHCl3 (3 × 100 mL). The combined organic phases were washed with brine (2 × 50 mL), dried with anhyd Na2SO4 and filtered. The solvent was evaporated in vacuo and the residue was purified by chromatography, eluting with CHCl3–MeOH (9:1) to yield the alkyne dendron 13 as a colorless solid in 88% yield; mp 164–166 ºC. 1H NMR (300 MHz, CDCl3): δ = 2.48 (t, J = 2.4 Hz, 1 H), 4.45 (d, J = 2.4 Hz, 2 H), 4.91 (s, 4 H), 5.36 (s, 4 H), 6.68 (s, 1 H), 6.71 (s, 2 H), 7.49 (2 H), 7.63–7.66 (m, 4 H), 7.76–7.79 (m, 4 H). 13C NMR (75 MHz, CDCl3): δ = 33.1, 53.6, 55.9, 76.5, 77.5, 114.8, 120.3, 122.9, 123.5, 132.0, 134.1, 137.0, 143.3, 158.4, 167.7. MS (ESI): m/z = 614.3 [M + 1]+. Anal. Calcd for C33H24N8O5: C, 64.70; H, 3.95; N, 18.29. Found: C, 64.86; H, 3.79; N, 18.12.
  • 31 Dendrimer 1: The crude product was purified by chromatography using CHCl3–MeOH (9:2) as eluent to give the dendrimer 1 as a colorless solid in 91% yield; mp 204 ºC. 1H NMR (300 MHz, DMSO-d 6): δ = 4.84 (s, 4 H), 5.74 (s, 4 H), 7.09–7.12 (m, 2 H), 7.30–7.34 (m, 2 H), 7.83–7.91 (m, 8 H), 8.09 (s, 2 H). 13C NMR (75 MHz, DMSO-d 6): δ = 32.9, 49.8, 123.2, 123.5, 128.8, 129.1, 131.6, 134.1, 134.5, 142.6, 167.3. MS (ESI): m/z = 559.3 [M + 1]+. Anal. Calcd for C30H22N8O4: C, 64.51; H, 3.97; N, 20.06. Found: C, 64.36; H, 4.12; N, 19.88.
  • 32 Dendrimer 2: The crude product was purified by column chromatography using CHCl3–MeOH (9:1) as eluent to give the dendrimer 2 as a colorless solid in 91% yield; mp 141 ºC. 1H NMR (300 MHz, CDCl3): δ = 2.36 (s, 9 H), 4.94 (s, 6 H), 5.57 (s, 6 H), 7.28 (s, 3 H), 7.71–7.73 (m, 6 H), 7.83–7.86 (m, 6 H). 13C NMR (75 MHz, CDCl3): δ = 20.1, 32.9, 48.7, 122.0, 123.4, 129.2, 131.7, 132.0, 134.1, 139.3, 167.6. MS (ESI): m/z = 841.6 [M + 1]+. Anal. Calcd for C45H36N12O6: C, 64.28; H, 4.32; N, 19.99. Found: C, 64.42; H, 4.64; N, 19.79.
  • 33 Dendrimer 3: The crude product was purified by chromatography using CHCl3–MeOH (9:2) as eluent to give the dendrimer 3 as a colorless solid in 88% yield; mp 310–312 °C. 1H NMR (300 MHz, DMSO-d 6): δ = 4.82 (s, 8 H), 5.66 (s, 8 H), 6.88 (s, 2 H), 7.81–7.89 (m, 16 H), 8.02 (s, 4 H). 13C NMR (75 MHz, DMSO-d 6): δ = 32.8, 49.4, 123.1, 123.5, 130.2, 131.5, 134.4, 134.7, 142.5, 167.3. MS (QTOF): m/z = 1039.8 [M+]. Anal. Calcd for C54H38N16O8: C, 62.42; H, 3.69; N, 21.57. Found: C, 62.24; H, 3.78; N, 21.62.
  • 34 Dendrimer 4: The crude product was purified by column chromatography using CHCl3–MeOH (9:2) as eluent to give the dendrimer 4 as a colorless solid in 89% yield; mp 171 ºC. 1H NMR (300 MHz, DMSO-d 6): δ = 4.82 (s, 8 H), 5.08 (s, 4 H), 5.49 (s, 8 H), 5.84 (s, 4 H), 6.87 (s, 2 H), 6.92 (s, 4 H), 7.12–7.14 (m, 2 H), 7.34–7.37 (m, 2 H), 7.80–7.88 (m, 16 H), 8.15 (s, 4 H), 8.27 (s, 2 H). 13C NMR (75 MHz, DMSO-d 6): δ = 32.9, 49.9, 52.5, 61.1, 114.1, 120.0, 123.1, 123.4, 125.0, 128.9, 129.1, 131.5, 134.5, 134.4, 137.9, 142.5, 142.6, 158.3, 167.3. MS (QTOF): m/z = 1413 [M+]. Anal Calcd for C74H56N22O10: C, 62.88; H, 3.99; N, 21.80. Found: C, 62.79; H, 3.88; N, 21.80.
  • 35 Dendrimer 5: The crude product was purified by chromatography using CHCl3–MeOH (9:1) as eluent to give the dendrimer 5 as a colorless solid in 89% yield; mp 154–156 ºC. 1H NMR (300 MHz, CDCl3): δ = 2.29 (s, 9 H), 4.87 (s, 12 H), 4.95 (s, 6 H), 5.30 (s, 12 H), 5.52 (s, 6 H), 6.63 (s, 3 H), 6.69 (s, 6 H), 7.26 (s, 3 H), 7.52 (s, 6 H), 7.60–7.62 (m, 12 H), 7.72–7.74 (m, 12 H). 13C NMR (75 MHz, CDCl3): δ = 20.1, 33.0, 48.7, 53.6, 61.9, 114.6, 119.9, 122.4, 123.1, 123.4, 129.3, 131.6, 131.9, 134.1, 137.1, 139.3, 143.2, 159.1, 167.7. MS (QTOF): m/z = 2122.5 [M+]. Anal. Calcd for C111H87N33O15: C, 62.79; H, 4.13; N, 21.77. Found: C, 62.69; H, 4.01; N, 21.84.
  • 36 Dendrimer 6: The crude product was purified by column chromatography using CHCl3–MeOH (9:2) as eluent to give the dendrimer 6 as a colorless solid in 86% yield; mp 176–178 ºC. 1H NMR (300 MHz, DMSO-d 6): δ = 4.80 (s, 16 H), 5.03 (s, 8 H), 5.45 (s, 16 H), 5.76 (s, 8 H), 6.84 (s, 4 H), 6.87 (s, 8 H), 7.04 (s, 2 H), 7.78–7.81 (m, 32 H), 8.13 (s, 8 H), 8.19 (s, 4 H). 13C NMR (75 MHz, DMSO-d 6): δ = 32.8, 49.6, 52.5, 61.1, 114.0, 119.7, 119.9, 120.0, 121.6, 123.1, 123.4, 124.9, 131.4, 134.4, 137.8, 142.5, 158.3, 167.3. MS (QTOF): m/z = 2748.2 [M+]. Anal. Calcd for C142H106N44O20: C, 62.05; H, 3.89; N, 22.42. Found: C, 62.22; H, 3.78; N, 22.53.