Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2014; 25(07): 1031-1035
DOI: 10.1055/s-0033-1340956
DOI: 10.1055/s-0033-1340956
letter
1,2-Alkylarylation of Activated Alkenes with Two C–H Bonds by Using Visible-Light Catalysis
Further Information
Publication History
Received: 15 January 2014
Accepted after revision: 17 February 2014
Publication Date:
14 March 2014 (online)
Abstract
A new visible-light promoted strategy for the difunctionalization of activated alkenes with two C–H bonds has been developed. In the presence of [Ru(bpy)3Cl2], 4-MeOC6H4N2BF4, Na2CO3 and 36 W compact fluorescent light, a variety of N-arylacrylamides underwent the 1,2-alkylarylation reaction with acetonitrile or acetone to give the corresponding functionalized oxindoles in moderate to good yields.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References and Notes
- 1a Sibbald PA. PhD Dissertation. University of Washington; USA: 2009
- 1b Jacques B, Muñiz K In Catalyzed Carbon-Heteroatom Bond Formation . Yudin AK. Wiley-VCH; Weinheim: 2011: 119-135
- 1c Bergmeier SC. Tetrahedron 2000; 56: 2561
- 1d Beccalli EM, Broggini G, Martinelli M, Sottocornola S. Chem. Rev. 2007; 107: 5318
- 1e Kotov V, Scarborough CC, Stahl SS. Inorg. Chem. 2007; 46: 1910
- 1f Li G, Kotti SR. S. S, Timmons C. Eur. J. Org. Chem. 2007; 2745
- 1g Muñiz K. Angew. Chem. Int. Ed. 2009; 48: 9412
- 1h McDonald RI, Liu G, Stahl SS. Chem. Rev. 2011; 111: 2981
- 1i Xie Y.-X, Song R.-J, Xiang J.-N, Li J.-H. Chin. J. Org. Chem. 2012; 32: 1555
- 1j Zhang C, Tang C, Jiao N. Chem. Soc. Rev. 2012; 41: 3464
- 2a Wu T, Mu X, Liu G.-S. Angew. Chem. Int. Ed. 2011; 50: 12578
- 2b Zhang H, Chen P, Liu G.-S. Synlett 2012; 23: 2749
- 3a Meng Y, Guo L.-N, Wang H, Duan X.-H. Chem. Commun. 2013; 49: 7540
- 3b Zhou Z.-Z, Hua H.-L, Luo J.-Y, Chen Z.-S, Zhou P.-X, Liu X.-Y, Liang Y.-M. Tetrahedron 2013; 69: 10030
- 3c Zhou S.-L, Guo L.-N, Wang H, Duan X.-H. Chem. Eur. J. 2013; 19: 12970
- 3d Wang H, Guo L.-N, Duan X.-H. Org. Lett. 2013; 15: 5254
- 3e Wang H, Guo L.-N, Duan X.-H. Chem. Commun. 2013; 49: 10370
- 4 Li Z, Zhang Y, Zhang L, Liu Z.-Q. Org. Lett. 2014; 16: 382
- 5a Wei W.-T, Zhou M.-B, Fan J.-H, Liu W, Song R.-J, Liu Y, Hu M, Xie P, Li J.-H. Angew. Chem. Int. Ed. 2013; 52: 3638
- 5b Zhou M.-B, Wang C.-Y, Song R.-J, Liu Y, Wei W.-Y, Li J.-H. Chem. Commun. 2013; 49: 10817
- 5c Zhou M.-B, Song R.-J, Ouyang X.-H, Liu Y, Wei W.-T, Deng G.-B, Li J.-H. Chem. Sci. 2013; 4: 2690
- 6a Jaegli S, Dufour J, Wei H.-L, Piou T, Duan X.-H, Vors J.-P, Neuville L, Zhu J. Org. Lett. 2010; 12: 4498
- 6b Piou T, Neuville L, Zhu J. Angew. Chem. Int. Ed. 2012; 51: 11561
- 6c Mu X, Wu T, Wang H.-Y, Guo Y.-L, Liu G.-S. J. Am. Chem. Soc. 2012; 134: 878
- 6d Wu T, Zhang H, Liu G.-S. Tetrahedron 2012; 68: 5229
- 6e Li Y.-M, Sun M, Wang H.-L, Tian Q.-P, Yang S.-D. Angew. Chem. Int. Ed. 2013; 52: 3972
- 6f Wang H, Guo L.-N, Duan X.-H. Adv. Synth. Catal. 2013; 355: 2222
- 6g Wei X.-H, Li Y.-M, Zhou A.-X, Yang T.-T, Yang S.-D. Org. Lett. 2013; 15: 4158
- 6h Li X, Xu X, Hu P, Xiao X, Zhou C. J. Org. Chem. 2013; 78: 7343
- 6i Matcha K, Narayan R, Antonchick AP. Angew. Chem. Int. Ed. 2013; 52: 7985
- 6j Xie J, Xu P, Li H.-M, Xue Q.-C, Jin H.-M, Cheng Y.-X, Zhu C.-J. Chem. Commun. 2013; 49: 5672
- 6k Li Y.-M, Wei X.-H, Li X.-A, Yang S.-D. Chem. Commun. 2013; 49: 11701
- 6l Fan J.-H, Zhou M.-B, Liu Y, Wei W.-T, Ouyang X.-H, Song R.-J, Li J.-H. Synlett 2014; 25: 657
- 6m Fu W, Xu F, Fu Y, Zhu M, Yu J, Xu C, Zou D. J. Org. Chem. 2013; 78: 12202
- 6n Xu P, Xie J, Xue Q, Pan C, Cheng Y, Zhu C. Chem. Eur. J. 2013; 19: 14039
- 6o Shen T, Yuan Y, Jiao N. Chem. Commun. 2014; 50: 554
- 6p Xu X, Tang Y, Li X, Hong G, Fang M, Du X. J. Org. Chem. 2014; 79: 446
- 7a Melchiorre P. Angew. Chem. Int. Ed. 2009; 48: 1360
- 7b Zeitler K. Angew. Chem. Int. Ed. 2009; 48: 9785
- 7c Yoon TP, Ischay MA, Du J. Nat. Chem. 2010; 2: 527
- 7d Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
- 7e Teplý F. Collect. Czech. Chem. Commun. 2011; 76: 859
- 7f Ravelli D, Fagnoni M. ChemCatChem 2012; 4: 169
- 7g Xuan J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
- 7h Hari DP, König B. Angew. Chem. Int. Ed. 2013; 52: 4734
- 8a Sandmeyer T. Ber. Dtsch. Chem. Ges. 1884; 17: 1633
- 8b Sandmeyer T. Ber. Dtsch. Chem. Ges. 1884; 17: 2650
- 8c Hodgson HH. Chem. Rev. 1947; 40: 251
- 8d Pschorr R. Ber. 1896; 29: 496
- 8e Leake PH. Chem. Rev. 1956; 56: 27
- 8f Cano-Yelo H, Deronzier A. J. Chem. Soc., Perkin Trans. 2 1984; 1093
- 8g Cano-Yelo H, Deronzier A. J. Chem. Soc., Faraday Trans. 1 1984; 3011
- 8h Cano-Yelo H, Deronzier A. Tetrahedron Lett. 1984; 25: 5517
- 9a Jensen BS. CNS Drug Rev. 2002; 8: 353
- 9b Millemaggi A, Taylor RJ. K. Eur. J. Org. Chem. 2010; 4527
- 9c Zhou F, Liu Y.-L, Zhou J. Adv. Synth. Catal. 2010; 352: 1381
- 9d Deak G, Doda M, Gyorgy L, Hazai L, Sterk L. J. Med. Chem. 1977; 20: 1384
- 9e Numata A, Yang P, Takahashi C, Fujiki R, Nabae M, Fujita E. Chem. Pharm. Bull. 1989; 37: 648
- 9f Hibino S, Choshi T. Nat. Prod. Rep. 2001; 18: 66
- 10 1,2-Alkylarylation of Activated Alkenes with Acetonitrile; Typical Procedure: To a Schlenk tube were added N-methyl-N-phenylmethacrylamide (1a; 0.3 mmol), 4-MeOC6H4N2BF4 (2 equiv), [Ru(bpy)3Cl2] (5 mol%), Na2CO3 (2 equiv), and acetonitrile (2a; 1 mL). The tube was charged with argon and the mixture was stirred at 50 °C (oil bath temperature) under irradiation with a 36 W compact fluorescent light for the indicated time until complete consumption of starting material was observed (reaction monitored by TLC and/or GC-MS analysis).Upon completion, the reaction mixture was cooled to room temperature, diluted in Et2O (3 mL), and washed with brine (3 mL). The aqueous phase was re-extracted with Et2O (3 mL) and the combined organic extracts were dried over Na2SO4, concentrated in vacuum, and the resulting residue was purified by silica gel column chromatography (hexane–EtOAc, 5:1) to afford the desired product 3a. 3-(1,3-Dimethyl-2-oxoindolin-3-yl)propanenitrile (3a): 2 Brown oil. 1H NMR (400 MHz, CDCl3): δ = 7.34–7.30 (m, 1 H), 7.18 (d, J = 7.2 Hz 1 H), 7.11 (t, J = 7.6 Hz, 1 H), 6.88 (d, J = 7.6 Hz, 1 H), 3.22 (s, 3 H), 2.34–2.29 (m, 1 H), 2.11–1.98 (m, 3 H), 1.39 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 178.8, 143.1, 131.6, 128.6, 123.0, 122.6, 118.8, 108.5, 47.3, 33.4, 26.3, 23.4, 12.8. MS (EI, 70 eV): m/z (%) = 214 (37) [M]+, 161 (35), 160 (100).
For recent reviews, see:
For papers on the other oxidative difunctionalizations of alkenes involving C–H fuctionalization, see:
For special reviews on visible-light photoredox catalysis, see:
For pioneering papers on the use of aryldiazonium salts in organic synthesis, see:
The Pschorr reaction:
For selected reviews and papers, see: