Synlett 2014; 25(10): 1385-1390
DOI: 10.1055/s-0033-1341277
letter
© Georg Thieme Verlag Stuttgart · New York

A General and Highly Efficient Protocol for the Synthesis of Chalcogeno­acetylenes by Copper(I)-Terpyridine Catalyst

Barahman Movassagh*
Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran   Email: bmovass1178@yahoo.com   Email: momeni@kntu.ac.ir
,
Ali Yousefi
Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran   Email: bmovass1178@yahoo.com   Email: momeni@kntu.ac.ir
,
Badri Zaman Momeni*
Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran   Email: bmovass1178@yahoo.com   Email: momeni@kntu.ac.ir
,
Sepideh Heydari
Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran   Email: bmovass1178@yahoo.com   Email: momeni@kntu.ac.ir
› Author Affiliations
Further Information

Publication History

Received: 04 February 2014

Accepted after revision: 31 March 2014

Publication Date:
12 May 2014 (online)


Abstract

A highly efficient copper-catalyzed Csp–X (X = S, Se, Te) bond-forming reaction of terminal alkynes and diorganyl dichalcogenides has been developed. This transformation was realized through the use of copper(I) iodide as a catalyst, 4′-(4-methoxyphenyl)-2,2′:6′,2′′-terpyridine as a ligand, and K3PO4 as a base. A variety of the functionalized substrates were found to react under these reaction conditions to provide products in good to excellent yields.

Supporting Information

 
  • References and Notes

  • 8 Comasseto JV, Menezes PH, Stefani HA, Zeni G, Braga AL. Tetrahedron 1996; 52: 9687
  • 9 Yang DY, Huang XJ. J. Organomet. Chem. 1997; 543: 165
  • 10 Tingolli M, Tiecco M, Testaferri L, Temperini A, Pelizzi G, Bacchi A. Tetrahedron 1995; 51: 4691
  • 11 Huang X, Ma Y. Synthesis 1997; 312
  • 12 Zhu LS, Huang ZZ, Huang XJ. J. Chem. Res., Symop. 1996; 112
  • 13 Kataoka T, Watanabe S, Yamamoto K. Tetrahedron Lett. 1999; 40: 931
  • 14 Tiecco M, Testaferri L, Temperini A, Bagnoli L, Marini F, Santi C, Terlizzi R. Eur. J. Org. Chem. 2004; 3447
  • 17 Movassagh B, Navidi M. Chin. Chem. Lett. 2012; 23: 1035
  • 18 Abramov MA, Dehaen W, D’hooge B, Petrov ML, Smeets S, Toppet S, Voets M. Tetrahedron 2000; 56: 3933
  • 19 Das JP, Roy UK, Roy S. Organometallics 2005; 24: 6136
  • 20 Takimiya K, Jigami T, Kawashima M, Kodani M, Aso Y, Otsubo T. J. Org. Chem. 2002; 67: 4218
  • 21 Werz BD, Gleiter R, Rominger F. J. Org. Chem. 2002; 67: 4290
    • 22a Back TG, Bethell RJ, Parvez M, Wehrli D. J. Org. Chem. 1998; 63: 7908
    • 22b Rampon DS, Giovenardi R, Silva TL, Rambo RS, Merlo AA, Schneider PH. Eur. J. Org. Chem. 2011; 7066
  • 23 Cook DJ, Hill AF, Wilson DJ. J. Chem. Soc., Dalton Trans. 1998; 1171
  • 24 Mohammadi E, Movassagh B. Tetrahedron Lett. 2014; 55: 1613
  • 25 Lara RG, Rosa PC, Soares LK, Silva MS, Jacob RG, Perin G. Tetrahedron 2012; 68: 10414
  • 26 Braga AL, Reckziegel A, Menezes PH, Stefani HA. Tetrahedron Lett. 1993; 34: 393
  • 28 Zhao LX, Moon YS, Basnet A, Kim E.-K, Jahng Y, Park JG, Jeong TC, Cho W.-J, Choi S.-U, Lee S.-Y, Lee C.-S, Lee ES. Bioorg. Med. Chem. Lett. 2004; 14: 1333
  • 29 Park J, Pasupathy AN, Goldsmith JI, Chang C, Yaish Y, Petta JR, Rinkoski M, Sethna JP, Abruña HD, McEuen PL, Ralph DC. Nature (London) 2002; 417: 722
  • 30 Wild A, Winter A, Schlütter F, Schubert US. Chem. Soc. Rev. 2011; 40: 1459
  • 31 Winter A, Hager MD, Newkome GR, Schubert US. Adv. Mater. 2011; 23: 5728
  • 32 Wang J, Hanan GS. Synlett 2005; 1251
  • 33 General Procedure To the suspension of K3PO4 (2.0 mmol) in dry DMSO (4 mL) diorganyl dichalcogenide (1.0 mmol) and terminal acetylene (2.0 mmol) were added, and the mixture was stirred at 50 °C. Then, CuI (1.0 mol%) and Mtpy (1.0 mol%) were added to the above mixture, and the reaction mixture was stirred at that temperature under aerobic conditions. The progress of the reaction was monitored by TLC. When the reaction was complete, the mixture was poured into H2O (15 mL) and extracted with EtOAc (2 × 15 mL). The combined organic layers were dried over MgSO4, filtered, and concentrated in vacuo to give the crude product which was further purified by preparative TLC (silica gel, n-hexane–EtOAc = 9:1). The identity and purity of the products were confirmed by IR, 1H NMR, and 13C NMR spectroscopic analysis. Phenyl(2-phenylethynyl)selane (3a) Yellow oil. IR (neat): ν = 2200 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.61 (d, J = 9 Hz, 2 H), 7.50–7.51 (m, 2 H), 7.32–7.37 (m, 6 H). 13C NMR (75 MHz, CDCl3): δ = 131.7, 129.5, 129.0, 128.9, 128.6, 128.3, 127.1, 123.2, 102.9, 69.2. (4-Methoxyphenyl)(2-phenylethynyl)selane (3b) Yellow oil. IR (neat): ν = 2208 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.58 (d, J = 8.8 Hz, 2 H), 7.34–7.48 (m, 5 H), 6.88 (d, J = 8.8 Hz, 2 H), 3.82 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 159.7, 133.7, 131.9, 128.6, 128.1, 121.1, 120.2, 115.0, 101.1, 70.4, 55.3. Benzyl(2-phenylethynyl)selane (3e) Yellow oil. IR (neat): ν = 2156 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.22–7.42 (m, 10 H), 3.74 (s, 2 H). 13C NMR (75 MHz, CDCl3): δ = 139.2, 137.5, 132.4, 131.4, 129.1, 128.2, 126.7, 123.5, 101.3, 68.1, 32.7. Methyl(2-phenylethynyl)selane (3f) Orange oil. IR (neat): ν = 2201 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.96–7.99 (m, 2 H), 7.86–7.89 (m, 3 H), 2.28 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 135.2, 129.99, 129.97, 125.1, 103.3, 73.2, 8.7. (Hex-1-ynyl)(phenyl)selane (3g) Yellow oil. IR (neat): ν = 2197 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.52 (d, J = 8.2 Hz, 2 H), 7.21–7.31 (m, 3 H), 2.47 (t, J = 6.9 Hz, 2 H), 1.61 (quin, J = 6.8 Hz, 2 H), 1.47 (sext, J = 7.2 Hz, 2 H), 0.94 (t, J = 7.2 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 133.0, 129.4, 128.6, 126.7, 104.7, 57.3, 30.8, 21.98, 20.3, 14.1, 13.6. 3-(Phenylselanyl)prop-2-yn-1-ol (3i) Yellow oil. IR (neat): ν = 3339, 3059 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.51–7.63 (m, 2 H), 7.26–7.37 (m, 3 H), 4.15 (s, 2 H), 1.96 (br s, 1 H). 13C NMR (75 MHz, CDCl3): δ = 132.3, 130.3, 129.4, 127.6, 101.5, 67.5, 64.9. Phenyl(2-phenylethynyl)sulfane (3k) Yellow oil. IR (neat): ν = 2215 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.51–7.64 (m, 2 H), 7.31–7.41 (m, 2 H), 7.18–7.29 (m, 6 H). 13C NMR (75 MHz, CDCl3): δ = 134.7, 130.6, 129.37, 129.30, 129.1, 128.9, 126.7, 125.9, 98.5, 70.2. (Oct-1-ynyl)(phenyl)sulfane (3l) Yellow oil. IR (neat): ν = 2220 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.58 (d, J = 8.6 Hz, 2 H), 7.27–7.37 (m, 3 H), 2.26 (t, J = 7.2 Hz, 2 H), 1.51 (quin, J = 7.4 Hz, 2 H), 1.21–1.30 (m, 6 H), 0.86 (t, J = 6.5 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 130.5, 129.7, 129.1, 126.7, 106.1, 61.7, 37.1, 31.5, 28.5, 22.5, 14.1.Ethyl 3-(Phenylthio)propiolate (3n) Colorless oil. IR (neat): ν = 1678 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.30–7.38 (m, 3 H), 7.21–7.27 (m, 2 H), 4.55 (q, J = 6.9 Hz, 2 H), 1.54 (t, J = 6.9 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 150.2, 130.4, 129.3, 128.1, 75.7, 74.1, 60.9, 15.1. (2-Phenylethynyl)(p-tolyl)tellane (3p) Orange oil. IR (neat): ν = 2210 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.27–7.59 (m, 9 H), 2.44 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 131.7, 129.5, 129.1, 128.8, 128.4, 128.2, 127.0, 123.1, 100.8, 64.3, 22.9. Ethyl 3-(Phenyltellanyl)propiolate (3r) Pale yellow oil. IR (neat): ν = 1674 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.35–7.36 (m, 5 H), 4.27 (q, J = 7.2 Hz, 2 H), 1.33 (t, J = 7.2 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 149.9, 133.3, 129.3, 128.2, 74.1, 73.0, 60.5, 14.3.