Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2014; 25(10): 1385-1390
DOI: 10.1055/s-0033-1341277
DOI: 10.1055/s-0033-1341277
letter
A General and Highly Efficient Protocol for the Synthesis of Chalcogenoacetylenes by Copper(I)-Terpyridine Catalyst
Further Information
Publication History
Received: 04 February 2014
Accepted after revision: 31 March 2014
Publication Date:
12 May 2014 (online)
Abstract
A highly efficient copper-catalyzed Csp–X (X = S, Se, Te) bond-forming reaction of terminal alkynes and diorganyl dichalcogenides has been developed. This transformation was realized through the use of copper(I) iodide as a catalyst, 4′-(4-methoxyphenyl)-2,2′:6′,2′′-terpyridine as a ligand, and K3PO4 as a base. A variety of the functionalized substrates were found to react under these reaction conditions to provide products in good to excellent yields.
Key words
alkynyl chalcogenides - diorganyl dichalcogenides - terminal alkynes - terpyridines - copper-catalyzed reactionSupporting Information
- for this article is available online at http://www.thieme-connect.com/products/ejournals/journal/ 10.1055/s-00000083.
- Supporting Information
-
References and Notes
- 1a Organoselenium Chemistry – Modern Developments in Organic Synthesis. In Topics in Current Chemistry. Vol. 208. Wirth T. Springer Verlag; Berlin: 2000
- 1b McReynolds MD, Dougherty JM, Hanson PR. Chem. Rev. 2004; 104: 2239
- 1c Zheng B, Gong Y, Xu H.-J. Tetrahedron 2013; 69: 5342
- 2a Gangjee A, Zeng Y, Tolreja T, McGuire JJ, Kisliuk RL, Queener SF. J. Med. Chem. 2007; 50: 3046
- 2b Faucher A.-M, White PW, Brochu C, Maitre CG, Rancourt J, Fazal G. J. Med. Chem. 2004; 47: 18
- 2c Lin C.-H, Wang Y.-J, Lee C.-F. Eur. J. Org. Chem. 2010; 4368
- 3a Organoselenium Chemistry. In Topics in Current Chemistry. Wirth T. Springer; Heidelberg: 2000: 208
- 3b Taniguchi N, Onami T. J. Org. Chem. 2004; 69: 915
- 3c Zhang S, Qian P, Zhang M, Hu M, Cheng J. J. Org. Chem. 2010; 75: 6732
- 3d Freudendahl DM, Santoro S, Shahzad SA, Santi C, Wirth T. Angew. Chem. Int. Ed. 2009; 121: 8409
- 3e Beletskaya IP, Ananikov VP. Chem. Rev. 2011; 111: 1596
- 3f Magano J, Dunetz JR. Chem. Rev. 2011; 111: 2177
- 3g Godoi M, Paixão MW, Braga AL. Dalton Trans. 2011; 40: 11347
- 4a Stadtman TC. Annu. Rev. Biochem. 1980; 49: 93
- 4b Geiger PG, Lin F, Girotti AW. Free Radical Biol. Med. 1993; 14: 251
- 4c Krief A. Janssen Chim. Acta 1993; 11: 10
- 4d Nogueira CW, Zeni G, Rocha JB. T. Chem. Rev. 2004; 104: 6255
- 4e Mugesh G, du Mont WW, Sies H. Chem. Rev. 2001; 101: 2125
- 4f Krehl S, Loewinger M, Florian S, Kipp AP, Banning A, Wessjohann LA, Brauer MN, Iori R, Esworthy RS, Chu F.-F, Brigelius-Flohé R. Carcinogenesis 2012; 33: 620
- 4g Wessjohann LA, Schneider A, Abbas M, Brandt W. Biol. Chem. 2007; 388: 997
- 4h Mecklenburg S, Shaaban S, Ba LA, Burkholz T, Schneider T, Diesel B, Kiemer AK, Röseler A, Becker K, Reichrath J, Stark A, Tilgen W, Abbas M, Wessjohann LA, Sasse F, Jacob C. Org. Biomol. Chem. 2009; 7: 4753
- 4i Roman M, Jitaru P, Barbante C. Metallomics 2014; 6: 25
- 5a Crouch DJ, Skabara PJ, Lohr JE, McDouall JJ. W, Heeney M, McCulloch I, Sparrowe D, Shkunov M, Coles SJ, Horton PN, Hursthouse MB. Chem. Mater. 2005; 17: 6567
- 5b Petrov VF. Mol. Cryst. Liq. Cryst. 2005; 442: 51
- 5c Tavares A, Schneider PH, Merlo AA. Eur. J. Org. Chem. 2009; 889
- 5d Shimizu Y, Oikawa K, Nakayama KI, Guillon D. J. Mater. Chem. 2007; 17: 4223
- 5e Passo JA, Vilela GD, Schneider PH, Ritter OM. S, Merlo AA. Liq. Cryst. 2008; 35: 833
- 5f Lepeltier M, Hiltz J, Lockwood T, Belanger-Gariepy F, Perepichka DF. J. Mater. Chem. 2009; 19: 5167
- 6a Magriotis PA, Brown JT, Scott ME. Tetrahedron Lett. 1991; 32: 5047
- 6b Comasseto JV. J. Organomet. Chem. 1983; 253: 131
- 6c Braga AL, Reckziegel A, Silveira CC, Comasseto JV. Synth. Commun. 1994; 24: 1165
- 6d Braga AL, Comasseto JV, Petragnani N. Synthesis 1984; 240
- 6e Ma Y, Qian C. Tetrahedron Lett. 2000; 41: 945
- 7a Petrov M, Radchenko SI, Kupin VS, Petrov AA. J. Org. Chem. (USSR) 1973; 9: 683
- 7b Rampon DS, Rodembusch FS, Schneider JM. F. M, Bechtold IH, Gonçalves PF. B, Merlo AA, Schneider PH. J. Mater. Chem. 2010; 20: 715
- 7c Rampon DS, Rodembusch FS, Lourega R, Gonçalves PF. B, Merlo AA, Schneider PH. J. Braz. Chem. Soc. 2010; 21: 2100
- 8 Comasseto JV, Menezes PH, Stefani HA, Zeni G, Braga AL. Tetrahedron 1996; 52: 9687
- 9 Yang DY, Huang XJ. J. Organomet. Chem. 1997; 543: 165
- 10 Tingolli M, Tiecco M, Testaferri L, Temperini A, Pelizzi G, Bacchi A. Tetrahedron 1995; 51: 4691
- 11 Huang X, Ma Y. Synthesis 1997; 312
- 12 Zhu LS, Huang ZZ, Huang XJ. J. Chem. Res., Symop. 1996; 112
- 13 Kataoka T, Watanabe S, Yamamoto K. Tetrahedron Lett. 1999; 40: 931
- 14 Tiecco M, Testaferri L, Temperini A, Bagnoli L, Marini F, Santi C, Terlizzi R. Eur. J. Org. Chem. 2004; 3447
- 15a Bouillon JP, Musyanovich R, Portella C, Shermolovich Y. Eur. J. Org. Chem. 2001; 3625
- 15b Savarin C, Srogl J, Liebeskind LS. Org. Lett. 2001; 3: 91
- 16a Ahammed S, Bhadra S, Kundu D, Sreedhar B, Ranu BC. Tetrahedron 2012; 68: 10542
- 16b Sharma A, Schwab RS, Braga AL, Barcellos T, Paixão MW. Tetrahedron Lett. 2008; 49: 5172
- 16c Godoi M, Liz DG, Ricardo EW, Rocha MS. T, Azeredo JB, Braga AL. Tetrahedron 2014; 70: 3349
- 16d Braga AL, Silveira CC, Reckziegel A, Menezes PH. Tetrahedron Lett. 1993; 34: 8041
- 16e Bieber LW, da Silva MF, Menezes PH. Tetrahedron Lett. 2004; 45: 2735
- 16f Godoi M, Richardo EW, Frizon TE, Rocha MS. T, Singh D, Paixão MW, Braga AL. Tetrahedron 2012; 68: 10426
- 16g Cohen RJ, Fox DL, Salvatore RN. J. Org. Chem. 2004; 69: 4265
- 16h Gendre F, Diaz P. Tetrahedron Lett. 2000; 41: 5193
- 17 Movassagh B, Navidi M. Chin. Chem. Lett. 2012; 23: 1035
- 18 Abramov MA, Dehaen W, D’hooge B, Petrov ML, Smeets S, Toppet S, Voets M. Tetrahedron 2000; 56: 3933
- 19 Das JP, Roy UK, Roy S. Organometallics 2005; 24: 6136
- 20 Takimiya K, Jigami T, Kawashima M, Kodani M, Aso Y, Otsubo T. J. Org. Chem. 2002; 67: 4218
- 21 Werz BD, Gleiter R, Rominger F. J. Org. Chem. 2002; 67: 4290
- 22a Back TG, Bethell RJ, Parvez M, Wehrli D. J. Org. Chem. 1998; 63: 7908
- 22b Rampon DS, Giovenardi R, Silva TL, Rambo RS, Merlo AA, Schneider PH. Eur. J. Org. Chem. 2011; 7066
- 23 Cook DJ, Hill AF, Wilson DJ. J. Chem. Soc., Dalton Trans. 1998; 1171
- 24 Mohammadi E, Movassagh B. Tetrahedron Lett. 2014; 55: 1613
- 25 Lara RG, Rosa PC, Soares LK, Silva MS, Jacob RG, Perin G. Tetrahedron 2012; 68: 10414
- 26 Braga AL, Reckziegel A, Menezes PH, Stefani HA. Tetrahedron Lett. 1993; 34: 393
- 27a Gong H, Gagné MR. J. Am. Chem. Soc. 2008; 130: 12177
- 27b Joshi-Pangu A, Ganesh M, Biscoe MR. Org. Lett. 2011; 13: 1218
- 27c Aoyama N, Hamada T, Manabe K, Kobayashi S. J. Org. Chem. 2003; 68: 7329
- 28 Zhao LX, Moon YS, Basnet A, Kim E.-K, Jahng Y, Park JG, Jeong TC, Cho W.-J, Choi S.-U, Lee S.-Y, Lee C.-S, Lee ES. Bioorg. Med. Chem. Lett. 2004; 14: 1333
- 29 Park J, Pasupathy AN, Goldsmith JI, Chang C, Yaish Y, Petta JR, Rinkoski M, Sethna JP, Abruña HD, McEuen PL, Ralph DC. Nature (London) 2002; 417: 722
- 30 Wild A, Winter A, Schlütter F, Schubert US. Chem. Soc. Rev. 2011; 40: 1459
- 31 Winter A, Hager MD, Newkome GR, Schubert US. Adv. Mater. 2011; 23: 5728
- 32 Wang J, Hanan GS. Synlett 2005; 1251
- 33 General Procedure To the suspension of K3PO4 (2.0 mmol) in dry DMSO (4 mL) diorganyl dichalcogenide (1.0 mmol) and terminal acetylene (2.0 mmol) were added, and the mixture was stirred at 50 °C. Then, CuI (1.0 mol%) and Mtpy (1.0 mol%) were added to the above mixture, and the reaction mixture was stirred at that temperature under aerobic conditions. The progress of the reaction was monitored by TLC. When the reaction was complete, the mixture was poured into H2O (15 mL) and extracted with EtOAc (2 × 15 mL). The combined organic layers were dried over MgSO4, filtered, and concentrated in vacuo to give the crude product which was further purified by preparative TLC (silica gel, n-hexane–EtOAc = 9:1). The identity and purity of the products were confirmed by IR, 1H NMR, and 13C NMR spectroscopic analysis. Phenyl(2-phenylethynyl)selane (3a) Yellow oil. IR (neat): ν = 2200 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.61 (d, J = 9 Hz, 2 H), 7.50–7.51 (m, 2 H), 7.32–7.37 (m, 6 H). 13C NMR (75 MHz, CDCl3): δ = 131.7, 129.5, 129.0, 128.9, 128.6, 128.3, 127.1, 123.2, 102.9, 69.2. (4-Methoxyphenyl)(2-phenylethynyl)selane (3b) Yellow oil. IR (neat): ν = 2208 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.58 (d, J = 8.8 Hz, 2 H), 7.34–7.48 (m, 5 H), 6.88 (d, J = 8.8 Hz, 2 H), 3.82 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 159.7, 133.7, 131.9, 128.6, 128.1, 121.1, 120.2, 115.0, 101.1, 70.4, 55.3. Benzyl(2-phenylethynyl)selane (3e) Yellow oil. IR (neat): ν = 2156 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.22–7.42 (m, 10 H), 3.74 (s, 2 H). 13C NMR (75 MHz, CDCl3): δ = 139.2, 137.5, 132.4, 131.4, 129.1, 128.2, 126.7, 123.5, 101.3, 68.1, 32.7. Methyl(2-phenylethynyl)selane (3f) Orange oil. IR (neat): ν = 2201 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.96–7.99 (m, 2 H), 7.86–7.89 (m, 3 H), 2.28 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 135.2, 129.99, 129.97, 125.1, 103.3, 73.2, 8.7. (Hex-1-ynyl)(phenyl)selane (3g) Yellow oil. IR (neat): ν = 2197 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.52 (d, J = 8.2 Hz, 2 H), 7.21–7.31 (m, 3 H), 2.47 (t, J = 6.9 Hz, 2 H), 1.61 (quin, J = 6.8 Hz, 2 H), 1.47 (sext, J = 7.2 Hz, 2 H), 0.94 (t, J = 7.2 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 133.0, 129.4, 128.6, 126.7, 104.7, 57.3, 30.8, 21.98, 20.3, 14.1, 13.6. 3-(Phenylselanyl)prop-2-yn-1-ol (3i) Yellow oil. IR (neat): ν = 3339, 3059 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.51–7.63 (m, 2 H), 7.26–7.37 (m, 3 H), 4.15 (s, 2 H), 1.96 (br s, 1 H). 13C NMR (75 MHz, CDCl3): δ = 132.3, 130.3, 129.4, 127.6, 101.5, 67.5, 64.9. Phenyl(2-phenylethynyl)sulfane (3k) Yellow oil. IR (neat): ν = 2215 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.51–7.64 (m, 2 H), 7.31–7.41 (m, 2 H), 7.18–7.29 (m, 6 H). 13C NMR (75 MHz, CDCl3): δ = 134.7, 130.6, 129.37, 129.30, 129.1, 128.9, 126.7, 125.9, 98.5, 70.2. (Oct-1-ynyl)(phenyl)sulfane (3l) Yellow oil. IR (neat): ν = 2220 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.58 (d, J = 8.6 Hz, 2 H), 7.27–7.37 (m, 3 H), 2.26 (t, J = 7.2 Hz, 2 H), 1.51 (quin, J = 7.4 Hz, 2 H), 1.21–1.30 (m, 6 H), 0.86 (t, J = 6.5 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 130.5, 129.7, 129.1, 126.7, 106.1, 61.7, 37.1, 31.5, 28.5, 22.5, 14.1.Ethyl 3-(Phenylthio)propiolate (3n) Colorless oil. IR (neat): ν = 1678 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.30–7.38 (m, 3 H), 7.21–7.27 (m, 2 H), 4.55 (q, J = 6.9 Hz, 2 H), 1.54 (t, J = 6.9 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 150.2, 130.4, 129.3, 128.1, 75.7, 74.1, 60.9, 15.1. (2-Phenylethynyl)(p-tolyl)tellane (3p) Orange oil. IR (neat): ν = 2210 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.27–7.59 (m, 9 H), 2.44 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 131.7, 129.5, 129.1, 128.8, 128.4, 128.2, 127.0, 123.1, 100.8, 64.3, 22.9. Ethyl 3-(Phenyltellanyl)propiolate (3r) Pale yellow oil. IR (neat): ν = 1674 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.35–7.36 (m, 5 H), 4.27 (q, J = 7.2 Hz, 2 H), 1.33 (t, J = 7.2 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 149.9, 133.3, 129.3, 128.2, 74.1, 73.0, 60.5, 14.3.