Aktuelle Neurologie 2013; 40(04): 200-212
DOI: 10.1055/s-0033-1343155
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Zerebrale Bildgebung bei Demenzen: State-of-the-Art

Brain Imaging in Dementia: State-of-the-Art
K. Boelmans
1   Klinik und Poliklinik für Psychiatrie und Psychotherapie
2   Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf
,
R. Buchert
3   Klinik für Nuklearmedizin, Charité – Universitätsmedizin Berlin
› Author Affiliations
Further Information

Publication History

Publication Date:
11 April 2013 (online)

Zusammenfassung

Neben der klinischen und neuropsychologischen Untersuchung sowie der Liquoranalytik ist die zerebrale Bildgebung ein zentraler Baustein in der Differenzialdiagnostik von Demenzen. Mithilfe moderner Bildgebungsverfahren können die pathophysiologischen Korrelate von Demenzerkrankungen direkt auf der Struktur- und Funktionsebene nachgewiesen werden. In der Forschung gehört die individuelle ätiologische Differenzierung primärer Demenzerkrankungen mittels bildbasierter Biomarker bereits zum Standard, ebenso die Identifikation prodromaler (prädemenzieller) Erkrankungsstadien sowie die Verlaufs- und Therapiekontrolle mit bildbasierten Progressionsmarkern. Die hierzu entwickelten Protokolle und Verfahren gelangen jetzt zunehmend in die klinische Routine und finden neben der früher im Vordergrund stehenden Ausschlussdiagnostik Eingang in nationale und internationale Leitlinien zur Demenzdiagnostik. Die vorliegende Übersichtsarbeit fasst den aktuellen Stand der Demenzbildgebung in der klinischen Routine unter Berücksichtigung etablierter magnetresonanztomografischer und nuklearmedizinischer Untersuchungstechniken zusammen.

Abstract

Beside the clinical examination, neuropsychological testing and cerebrospinal fluid analysis imaging of the brain is a vital component in the diagnostic work-up of dementias. Using state-of-the-art imaging techniques it is possible to visualise pathophysiological correlates of primary dementias at a structural and even functional level. In a scientific context the individual differentiation of neurodegenerative disorders, as well as the identification of prodromal states and the monitoring of progression using imaging biomarkers are already standard practice. These validated protocols are now entering clinical routine. This development away from the diagnosis by an exclusion approach of former days is increasingly reflected in national and international guidelines and assists an earlier individual dementia screening. This review aims to give a survey about the current state of these imaging routines for the most prevalent types of dementia focusing on magnetic resonance and nuclear imaging.

 
  • Literatur

  • 1 Frisoni GB, Fox NC, Jack Jr CR et al. The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol 2010; 6: 67-77
  • 2 Pike KE, Savage G, Villemagne VL et al. Beta-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer’s disease. Brain 2007; 130: 2837-2844
  • 3 McKhann GM, Knopman DS, Chertkow H et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7: 263-269
  • 4 Rascovsky K, Hodges JR, Knopman D et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 2011; 134: 2456-2477
  • 5 Gorno-Tempini ML, Hillis AE, Weintraub S et al. Classification of primary progressive aphasia and its variants. Neurology 2011; 76: 1006-1014
  • 6 Jack Jr CR, Albert MS, Knopman DS et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7: 257-262
  • 7 Sperling RA, Aisen PS, Beckett LA et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7: 280-292
  • 8 Deutsche Gesellschaft für Neurologie (DGN), Deutsche Gesellschaft für Psychiatrie, Psychotherapie und Nervenheilkunde (DGPPN) und andere Fachgesellschaften. S3-Leitlinie „Demenzen“. Bonn: November 2009
  • 9 Cuingnet R, Gerardin E, Tessieras J et al. Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage 2011; 56: 766-781
  • 10 Huppertz HJ, Kroll-Seger J, Kloppel S et al. Intra- and interscanner variability of automated voxel-based volumetry based on a 3D probabilistic atlas of human cerebral structures. Neuroimage 2010; 49: 2216-2224
  • 11 Focke NK, Helms G, Kaspar S et al. Multi-site voxel-based morphometry – not quite there yet. Neuroimage 2011; 56: 1164-1170
  • 12 Muhlau M, Wohlschlager AM, Gaser C et al. Voxel-based morphometry in individual patients: a pilot study in early Huntington disease. AJNR Am J Neuroradiol 2009; 30: 539-543
  • 13 Kloppel S, Stonnington CM, Chu C et al. Automatic classification of MR scans in Alzheimer’s disease. Brain 2008; 131: 681-689
  • 14 Greenberg SM, Vernooij MW, Cordonnier C et al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 2009; 8: 165-174
  • 15 van Straaten EC, Fazekas F, Rostrup E et al. Impact of white matter hyperintensities scoring method on correlations with clinical data: the LADIS study. Stroke 2006; 37: 836-840
  • 16 Inzitari D, Pracucci G, Poggesi A et al. Changes in white matter as determinant of global functional decline in older independent outpatients: three year follow-up of LADIS (leukoaraiosis and disability) study cohort. BMJ 2009; 339: b2477
  • 17 Maillard P, Carmichael O, Fletcher E et al. Coevolution of white matter hyperintensities and cognition in the elderly. Neurology 2012; 79: 442-448
  • 18 Silverman DH. Brain 18F-FDG PET in the diagnosis of neurodegenerative dementias: comparison with perfusion SPECT and with clinical evaluations lacking nuclear imaging. J Nucl Med 2004; 45: 594-607
  • 19 Farid K, Caillat-Vigneron N, Sibon I. Is brain SPECT useful in degenerative dementia diagnosis?. J Comput Assist Tomogr 2011; 35: 1-3
  • 20 Herholz K, Schopphoff H, Schmidt M et al. Direct comparison of spatially normalized PET and SPECT scans in Alzheimer’s disease. J Nucl Med 2002; 43: 21-26
  • 21 Bennett DA, Cochran EJ, Saper CB et al. Pathological changes in frontal cortex from biopsy to autopsy in Alzheimer’s disease. Neurobiol Aging 1993; 14: 589-596
  • 22 Cohen AD, Rabinovici GD, Mathis CA et al. Using Pittsburgh Compound B for in vivo PET imaging of fibrillar amyloid-beta. Adv Pharmacol 2012; 64: 27-81
  • 23 Clark CM, Pontecorvo MJ, Beach TG et al. Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-beta plaques: a prospective cohort study. Lancet Neurol 2012; 11: 669-678
  • 24 Wolk DA, Grachev ID, Buckley C et al. Association between in vivo fluorine 18-labeled flutemetamol amyloid positron emission tomography imaging and in vivo cerebral cortical histopathology. Arch Neurol 2011; 68: 1398-1403
  • 25 Barthel H, Gertz HJ, Dresel S et al. Cerebral amyloid-beta PET with florbetaben (18F) in patients with Alzheimer’s disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol 2011; 10: 424-435
  • 26 Herholz K, Ebmeier K. Clinical amyloid imaging in Alzheimer’s disease. Lancet Neurol 2011; 10: 667-670
  • 27 Villemagne VL, Mulligan RS, Pejoska S et al. Comparison of 11C-PiB and 18F-florbetaben for Abeta imaging in ageing and Alzheimer’s disease. Eur J Nucl Med Mol Imaging 2012; 39: 983-989
  • 28 Yang L, Rieves D, Ganley C. Brain amyloid imaging – FDA approval of florbetapir F18 injection. N Engl J Med 2012; 367: 885-887
  • 29 Meyer PT, Hellwig S, Amtage F et al. Dual-biomarker imaging of regional cerebral amyloid load and neuronal activity in dementia with PET and 11C-labeled Pittsburgh compound B. J Nucl Med 2011; 52: 393-400
  • 30 Scheltens P, Launer LJ, Barkhof F et al. Visual assessment of medial temporal lobe atrophy on magnetic resonance imaging: interobserver reliability. J Neurol 1995; 242: 557-560
  • 31 Duara R, Loewenstein DA, Potter E et al. Medial temporal lobe atrophy on MRI scans and the diagnosis of Alzheimer disease. Neurology 2008; 71: 1986-1992
  • 32 Whitwell JL, Josephs KA, Murray ME et al. MRI correlates of neurofibrillary tangle pathology at autopsy: a voxel-based morphometry study. Neurology 2008; 71: 743-749
  • 33 Thomann PA, Dos Santos V, Seidl U et al. MRI-derived atrophy of the olfactory bulb and tract in mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis 2009; 17: 213-221
  • 34 Chincarini A, Bosco P, Calvini P et al. Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer’s disease. Neuroimage 2011; 58: 469-480
  • 35 Costafreda SG, Dinov ID, Tu Z et al. Automated hippocampal shape analysis predicts the onset of dementia in mild cognitive impairment. Neuroimage 2011; 56: 212-219
  • 36 Lindberg O, Walterfang M, Looi JC et al. Hippocampal shape analysis in Alzheimer’s disease and frontotemporal lobar degeneration subtypes. J Alzheimers Dis 2012; 30: 355-365
  • 37 Lo RY, Hubbard AE, Shaw LM et al. Longitudinal change of biomarkers in cognitive decline. Arch Neurol 2011; 68: 1257-1266
  • 38 Sabuncu MR, Desikan RS, Sepulcre J et al. The dynamics of cortical and hippocampal atrophy in Alzheimer disease. Arch Neurol 2011; 68: 1040-1048
  • 39 McDonald CR, McEvoy LK, Gharapetian L et al. Regional rates of neocortical atrophy from normal aging to early Alzheimer disease. Neurology 2009; 73: 457-465
  • 40 Brickman AM, Provenzano FA, Muraskin J et al. Regional White Matter Hyperintensity Volume, Not Hippocampal Atrophy, Predicts Incident Alzheimer Disease in the Community. Arch Neurol 2012; 69: 1621-1627
  • 41 Johnson KA, Jones K, Holman BL et al. Preclinical prediction of Alzheimer’s disease using SPECT. Neurology 1998; 50: 1563-1571
  • 42 Matsuda H. Cerebral blood flow and metabolic abnormalities in Alzheimer’s disease. Ann Nucl Med 2001; 15: 85-92
  • 43 Bradley KM, O’Sullivan VT, Soper ND et al. Cerebral perfusion SPET correlated with Braak pathological stage in Alzheimer’s disease. Brain 2002; 125: 1772-1781
  • 44 Foster NL, Heidebrink JL, Clark CM et al. FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer’s disease. Brain 2007; 130: 2616-2635
  • 45 Silverman DH, Small GW, Chang CY et al. Positron emission tomography in evaluation of dementia: Regional brain metabolism and long-term outcome. JAMA: the journal of the American Medical Association 2001; 286: 2120-2127
  • 46 Mosconi L, Tsui WH, De Santi S et al. Reduced hippocampal metabolism in MCI and AD: automated FDG-PET image analysis. Neurology 2005; 64: 1860-1867
  • 47 Arlt S, Brassen S, Jahn H et al. Association between FDG uptake, CSF biomarkers and cognitive performance in patients with probable Alzheimer’s disease. Eur J Nucl Med Mol Imaging 2009; 36: 1090-1100
  • 48 Landau SM, Harvey D, Madison CM et al. Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. Neurobiol Aging 2011; 32: 1207-1218
  • 49 Bohnen NI, Djang DS, Herholz K et al. Effectiveness and safety of 18F-FDG PET in the evaluation of dementia: a review of the recent literature. J Nucl Med 2012; 53: 59-71
  • 50 Mosconi L, Tsui WH, Herholz K et al. Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer’s disease, and other dementias. J Nucl Med 2008; 49: 390-398
  • 51 Landau SM, Harvey D, Madison CM et al. Comparing predictors of conversion and decline in mild cognitive impairment. Neurology 2010; 75: 230-238
  • 52 Mosconi L, Sorbi S, de Leon MJ et al. Hypometabolism exceeds atrophy in presymptomatic early-onset familial Alzheimer’s disease. J Nucl Med 2006; 47: 1778-1786
  • 53 Koivunen J, Scheinin N, Virta JR et al. Amyloid PET imaging in patients with mild cognitive impairment: a 2-year follow-up study. Neurology 2011; 76: 1085-1090
  • 54 Villemagne VL, Pike KE, Chetelat G et al. Longitudinal assessment of Abeta and cognition in aging and Alzheimer disease. Ann Neurol 2011; 69: 181-192
  • 55 Quigley H, Colloby SJ, O’Brien JT. PET imaging of brain amyloid in dementia: a review. Int J Geriatr Psychiatry 2011; 26: 991-999
  • 56 Jack Jr CR, Knopman DS, Jagust WJ et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 2013; 12: 207-216
  • 57 Crutch SJ, Lehmann M, Schott JM et al. Posterior cortical atrophy. Lancet Neurol 2012; 11: 170-178
  • 58 Lehmann M, Crutch SJ, Ridgway GR et al. Cortical thickness and voxel-based morphometry in posterior cortical atrophy and typical Alzheimer’s disease. Neurobiol Aging 2011; 32: 1466-1476
  • 59 Migliaccio R, Agosta F, Rascovsky K et al. Clinical syndromes associated with posterior atrophy: early age at onset AD spectrum. Neurology 2009; 73: 1571-1578
  • 60 Migliaccio R, Agosta F, Possin KL et al. White matter atrophy in Alzheimer’s disease variants. Alzheimers Dement 2012; 8: S78-S87, e71-72
  • 61 Bokde AL, Pietrini P, Ibanez V et al. The effect of brain atrophy on cerebral hypometabolism in the visual variant of Alzheimer disease. Arch Neurol 2001; 58: 480-486
  • 62 Rosenbloom MH, Alkalay A, Agarwal N et al. Distinct clinical and metabolic deficits in PCA and AD are not related to amyloid distribution. Neurology 2011; 76: 1789-1796
  • 63 Zerr I, Stoeck K, Schmidt C et al. Rasch progressive Demenzen. Akt Neurol 2012; 39: 138-144
  • 64 Tschampa HJ, Kallenberg K, Urbach H et al. MRI in the diagnosis of sporadic Creutzfeldt-Jakob disease: a study on inter-observer agreement. Brain 2005; 128: 2026-2033
  • 65 Macfarlane RG, Wroe SJ, Collinge J et al. Neuroimaging findings in human prion disease. J Neurol Neurosurg Psychiatry 2007; 78: 664-670
  • 66 Zeidler M, Sellar RJ, Collie DA et al. The pulvinar sign on magnetic resonance imaging in variant Creutzfeldt-Jakob disease. Lancet 2000; 355: 1412-1418
  • 67 Henkel K, Zerr I, Hertel A et al. Positron emission tomography with [(18)F]FDG in the diagnosis of Creutzfeldt-Jakob disease (CJD). J Neurol 2002; 249: 699-705
  • 68 Villemagne VL, McLean CA, Reardon K et al. 11C-PiB PET studies in typical sporadic Creutzfeldt-Jakob disease. J Neurol Neurosurg Psychiatry 2009; 80: 998-1001
  • 69 Piguet O, Hornberger M, Mioshi E et al. Behavioural-variant frontotemporal dementia: diagnosis, clinical staging, and management. Lancet Neurol 2011; 10: 162-172
  • 70 Kipps CM, Davies RR, Mitchell J et al. Clinical significance of lobar atrophy in frontotemporal dementia: application of an MRI visual rating scale. Dementia and geriatric cognitive disorders 2007; 23: 334-342
  • 71 Seeley WW, Crawford R, Rascovsky K et al. Frontal paralimbic network atrophy in very mild behavioral variant frontotemporal dementia. Arch Neurol 2008; 65: 249-255
  • 72 Krueger CE, Dean DL, Rosen HJ et al. Longitudinal rates of lobar atrophy in frontotemporal dementia, semantic dementia, and Alzheimer’s disease. Alzheimer Dis Assoc Disord 2010; 24: 43-48
  • 73 Barnes J, Whitwell JL, Frost C et al. Measurements of the amygdala and hippocampus in pathologically confirmed Alzheimer disease and frontotemporal lobar degeneration. Arch Neurol 2006; 63: 1434-1439
  • 74 Josephs KA, Dickson DW. Hippocampal sclerosis in tau-negative frontotemporal lobar degeneration. Neurobiol Aging 2007; 28: 1718-1722
  • 75 Gorno-Tempini ML, Dronkers NF, Rankin KP et al. Cognition and anatomy in three variants of primary progressive aphasia. Ann Neurol 2004; 55: 335-346
  • 76 Frings L, Mader I, Landwehrmeyer BG et al. Quantifying change in individual subjects affected by frontotemporal lobar degeneration using automated longitudinal MRI volumetry. Hum Brain Mapp 2012; 33: 1526-1535
  • 77 Salmon E, Kerrouche N, Herholz K et al. Decomposition of metabolic brain clusters in the frontal variant of frontotemporal dementia. Neuroimage 2006; 30: 871-878
  • 78 Rabinovici GD, Jagust WJ, Furst AJ et al. Abeta amyloid and glucose metabolism in three variants of primary progressive aphasia. Ann Neurol 2008; 64: 388-401
  • 79 Rabinovici GD, Rosen HJ, Alkalay A et al. Amyloid vs FDG-PET in the differential diagnosis of AD and FTLD. Neurology 2011; 77: 2034-2042
  • 80 McKeith IG, Dickson DW, Lowe J et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 2005; 65: 1863-1872
  • 81 Rodriguez MJ, Potter E, Shen Q et al. Cognitive and structural magnetic resonance imaging features of Lewy body dementia and Alzheimer’s disease. Alzheimers Dement 2012; 8: 211-218
  • 82 Middelkoop HA, van der Flier WM, Burton EJ et al. Dementia with Lewy bodies and AD are not associated with occipital lobe atrophy on MRI. Neurology 2001; 57: 2117-2120
  • 83 Watson R, Blamire AM, Colloby SJ et al. Characterizing dementia with Lewy bodies by means of diffusion tensor imaging. Neurology 2012; 79: 906-914
  • 84 Lim SM, Katsifis A, Villemagne VL et al. The 18F-FDG PET cingulate island sign and comparison to 123I-beta-CIT SPECT for diagnosis of dementia with Lewy bodies. J Nucl Med 2009; 50: 1638-1645
  • 85 Song SK, Lee JE, Park HJ et al. The pattern of cortical atrophy in patients with Parkinson’s disease according to cognitive status. Mov Disord 2011; 26: 289-296
  • 86 Apostolova LG, Beyer M, Green AE et al. Hippocampal, caudate, and ventricular changes in Parkinson’s disease with and without dementia. Mov Disord 2010; 25: 687-695
  • 87 Ibarretxe-Bilbao N, Ramirez-Ruiz B, Tolosa E et al. Hippocampal head atrophy predominance in Parkinson’s disease with hallucinations and with dementia. J Neurol 2008; 255: 1324-1331
  • 88 Weintraub D, Dietz N, Duda JE et al. Alzheimer’s disease pattern of brain atrophy predicts cognitive decline in Parkinson’s disease. Brain 2012; 135: 170-180
  • 89 Vander Borght T, Minoshima S, Giordani B et al. Cerebral metabolic differences in Parkinson’s and Alzheimer’s diseases matched for dementia severity. J Nucl Med 1997; 38: 797-802
  • 90 Gorelick PB, Scuteri A, Black SE et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association. Stroke 2011; 42: 2672-2713
  • 91 van der Flier WM, van Straaten EC, Barkhof F et al. Small vessel disease and general cognitive function in nondisabled elderly: the LADIS study. Stroke 2005; 36: 2116-2120
  • 92 De Groot JC, De Leeuw FE, Oudkerk M et al. Periventricular cerebral white matter lesions predict rate of cognitive decline. Ann Neurol 2002; 52: 335-341
  • 93 Spano VR, Mandell DM, Poublanc J et al. CO2 blood oxygen level-dependent MR mapping of cerebrovascular reserve in a clinical population: safety, tolerability, and technical feasibility. Radiology 2013; 266: 592-598
  • 94 Sinka L, Kovari E, Gold G et al. Small vascular and Alzheimer disease-related pathologic determinants of dementia in the oldest-old. J Neuropathol Exp Neurol 2010; 69: 1247-1255
  • 95 Viswanathan A, Rocca WA, Tzourio C. Vascular risk factors and dementia: how to move forward?. Neurology 2009; 72: 368-374
  • 96 Frisoni GB, Galluzzi S, Pantoni L et al. The effect of white matter lesions on cognition in the elderly – small but detectable. Nat Clin Pract Neurol 2007; 3: 620-627
  • 97 Schmidt R, Ropele S, Enzinger C et al. White matter lesion progression, brain atrophy, and cognitive decline: the Austrian stroke prevention study. Ann Neurol 2005; 58: 610-616
  • 98 Viswanathan A, Greenberg SM. Cerebral amyloid angiopathy in the elderly. Ann Neurol 2011; 70: 871-880
  • 99 Goos JD, Teunissen CE, Veerhuis R et al. Microbleeds relate to altered amyloid-beta metabolism in Alzheimer’s disease. Neurobiol Aging 2012; 33: e1011-1019
  • 100 Henneman WJ, Sluimer JD, Cordonnier C et al. MRI biomarkers of vascular damage and atrophy predicting mortality in a memory clinic population. Stroke 2009; 40: 492-498
  • 101 Cordonnier C, van der Flier WM. Brain microbleeds and Alzheimer’s disease: innocent observation or key player?. Brain 2011; 134: 335-344
  • 102 van der Vlies AE, Goos JD, Barkhof F et al. Microbleeds do not affect rate of cognitive decline in Alzheimer disease. Neurology 2012; 79: 763-769
  • 103 van Norden AG, van den Berg HA, de Laat KF et al. Frontal and temporal microbleeds are related to cognitive function: the Radboud University Nijmegen Diffusion Tensor and Magnetic Resonance Cohort (RUN DMC) Study. Stroke 2011; 42: 3382-3386
  • 104 Pascual B, Prieto E, Arbizu J et al. Brain glucose metabolism in vascular white matter disease with dementia: differentiation from Alzheimer disease. Stroke 2010; 41: 2889-2893
  • 105 Kurz A, Riemenschneider M, Wallin A. Potential biological markers for cerebrovascular disease. Int Psychogeriatr 2003; 15 (Suppl. 01) 89-97
  • 106 Nagata K, Kondoh Y, Atchison R et al. Vascular and metabolic reserve in Alzheimer’s disease. Neurobiol Aging 2000; 21: 301-307
  • 107 Johnson KA, Gregas M, Becker JA et al. Imaging of amyloid burden and distribution in cerebral amyloid angiopathy. Ann Neurol 2007; 62: 229-234
  • 108 Gurol ME, Dierksen G, Betensky R et al. Predicting sites of new hemorrhage with amyloid imaging in cerebral amyloid angiopathy. Neurology 2012; 79: 320-326
  • 109 Bozoki AC, Korolev IO, Davis NC et al. Disruption of limbic white matter pathways in mild cognitive impairment and Alzheimer’s disease: a DTI/FDG-PET study. Hum Brain Mapp 2012; 33: 1792-1802
  • 110 Kendziorra K, Wolf H, Meyer PM et al. Decreased cerebral alpha4beta2* nicotinic acetylcholine receptor availability in patients with mild cognitive impairment and Alzheimer’s disease assessed with positron emission tomography. Eur J Nucl Med Mol Imaging 2011; 38: 515-525
  • 111 Cagnin A, Myers R, Gunn RN et al. In vivo visualization of activated glia by [11C] (R)-PK11195-PET following herpes encephalitis reveals projected neuronal damage beyond the primary focal lesion. Brain 2001; 124: 2014-2027
  • 112 Buchert R, Santer R, Brenner W et al. Computer simulations suggest that acute correction of hyperglycaemia with an insulin bolus protocol might be useful in brain FDG PET. Nuklearmedizin Nuclear medicine 2009; 48: 44-54
  • 113 Garibotto V, Heinzer S, Vulliemoz S et al. Clinical Applications of Hybrid PET/MRI in Neuroimaging. Clin Nucl Med 2013; 38: e13-18